摘要:
Methods for etching high-k material at high temperatures are provided. In one embodiment, a method etching high-k material on a substrate may include providing a substrate having a high-k material layer disposed thereon into an etch chamber, forming a plasma from an etching gas mixture including at least a halogen containing gas into the etch chamber, maintaining a temperature of an interior surface of the etch chamber in excess of about 100 degree Celsius while etching the high-k material layer in the presence of the plasma, and maintaining a substrate temperature between about 100 degree Celsius and about 250 degrees Celsius while etching the high-k material layer in the presence of the plasma.
摘要:
Methods for fabricating a semiconductor device having a lanthanum-family-based oxide layer are described. A gate stack having a lanthanum-family-based oxide layer is provided above a substrate. At least a portion of the lanthanum-family-based oxide layer is modified to form a lanthanum-family-based halide portion. The lanthanum-family-based halide portion is removed with a water vapor treatment.
摘要:
Methods for etching, such as for fabricating a CMOS logic gate are provided herein. In some embodiments, a method of etching includes (a) providing a substrate having a first stack and a second stack disposed thereupon, the first stack comprising a high-k dielectric layer, a metal layer formed over the high-k dielectric layer, and a first polysilicon layer formed over the metal layer, the second stack comprising a second polysilicon layer, wherein the first and second stacks are substantially equal in thickness; (b) simultaneously etching a first feature in the first polysilicon layer and a second feature in the second polysilicon layer until the metal layer in the first stack is exposed; (c) simultaneously etching the metal layer and second polysilicon layer to extend the respective first and second features into the first and second stacks; and (d) etching the high-k dielectric layer.
摘要:
A method and apparatus are provided for plasma etching a substrate in a processing chamber. A focus ring assembly circumscribes a substrate support, providing uniform processing conditions near the edge of the substrate. The focus ring assembly comprises two rings, a first ring and a second ring, the first ring comprising quartz, and the second ring comprising monocrystalline silicon, silicon carbide, silicon nitride, silicon oxycarbide, silicon oxynitride, or combinations thereof. The second ring is disposed above the first ring near the edge of the substrate, and creates a uniform electric field and gas composition above the edge of the substrate that results in uniform etching across the substrate surface.
摘要:
Methods for fabricating one or more shallow trench isolation (STI) structures are provided herein. In some embodiments, a method for fabricating one or more shallow trench isolation (STI) structures may include providing a substrate having a patterned mask layer disposed thereon to define one or more STI structures. The substrate may be etched using a plasma formed from a process gas mixture to form one or more STI structures on the substrate, wherein the process gas mixture comprises a fluorine-containing gas and either a fluorocarbon-containing gas or a hydrofluorocarbon-containing gas.
摘要:
Disclosed herein is a method of pattern etching a layer of a silicon-containing dielectric material. The method employs a plasma source gas including CF4 to CHF3, where the volumetric ratio of CF4 to CHF3 is within the range of about 2:3 to about 3:1; more typically, about 1:1 to about 2:1. Etching is performed at a process chamber pressure within the range of about 4 mTorr to about 60 mTorr. The method provides a selectivity for etching a silicon-containing dielectric layer relative to photoresist of 1.5:1 or better. The method also provides an etch profile sidewall angle ranging from 88° to 92° between said etched silicon-containing dielectric layer and an underlying horizontal layer. in the semiconductor structure. The method provides a smooth sidewall when used in combination with certain photoresists which are sensitive to 193 nm radiation.
摘要:
Methods for etching, such as for fabricating a CMOS logic gate are provided herein. In some embodiments, a method of etching includes (a) providing a substrate having a first stack and a second stack disposed thereupon, the first stack comprising a high-k dielectric layer, a metal layer formed over the high-k dielectric layer, and a first polysilicon layer formed over the metal layer, the second stack comprising a second polysilicon layer, wherein the first and second stacks are substantially equal in thickness; (b) simultaneously etching a first feature in the first polysilicon layer and a second feature in the second polysilicon layer until the metal layer in the first stack is exposed; (c) simultaneously etching the metal layer and second polysilicon layer to extend the respective first and second features into the first and second stacks; and (d) etching the high-k dielectric layer.
摘要:
Methods for recess etching are provided herein that advantageously improve lateral to vertical etch ratio requirements, thereby enabling deeper recess etching while maintaining relatively shallow vertical etch depths. Such enhanced lateral etch methods advantageously provide benefits for numerous applications where lateral to vertical etch depth ratios are constrained or where recesses or cavities are desired to be formed. In some embodiments, a method of recess etching includes providing a substrate having a structure formed thereon; forming a recess in the substrate at least partially beneath the structure using a first etch process; forming a selective passivation layer on the substrate; and extending the recess in the substrate using a second etch process. The selective passivation layer is generally formed on regions of the substrate adjacent to the structure but generally not within the recess. The first and second etch processes may be the same or different.
摘要:
Methods are provided for processing a substrate by depositing a hardmask material on a surface of the substrate, depositing an anti-reflective coating on the hardmask material, depositing a resist material on the anti-reflective coating, patterning the resist material to form a first resist features having a first width to expose the anti-reflective coating, etching the anti-reflective coating and a first portion of the hardmask material, and trimming the resist material to form a second resist feature having a second width less than the first width.
摘要:
Disclosed herein is a method of pattern etching a layer of a silicon-containing dielectric material. The method employs a plasma source gas including CF4 to CHF3, where the volumetric ratio of CF4 to CHF3 is within the range of about 2:3 to about 3:1; more typically, about 1:1 to about 2:1. Etching is performed at a process chamber pressure within the range of about 4 mTorr to about 60 mTorr. The method provides a selectivity for etching a silicon-containing dielectric layer relative to photoresist of 1.5:1 or better. The method also provides an etch profile sidewall angle ranging from 88° to 92° between said etched silicon-containing dielectric layer and an underlying horizontal layer in the semiconductor structure. The method provides a smooth sidewall when used in combination with certain photoresists which are sensitive to 193 nm radiation.