Abstract:
Systems and methods for treating or manipulating biological tissues are provided. In the systems and methods, a biological tissue is placed in contact with an array of electrodes. Electrical pulses are then applied between a bias voltage bus and a reference voltage bus of a distributor having switching elements associated with each of the electrodes. The switching elements provide a first contact position for coupling electrodes to bias voltage bus, a second contact position for coupling electrodes to the reference voltage bus, and a third contact position for isolating electrodes from the high and reference voltage buses. The switching elements are operated over various time intervals to provide the first contact position for first electrodes, a second contact position for second electrodes adjacent to the first electrodes, and a third contact position for a remainder of the electrodes adjacent to the first and second electrodes.
Abstract:
An apparatus and methods for performing ablation of myocardial tissues are disclosed. The apparatus includes a plurality of ablation electrode configurations to which nanosecond pulsed electric fields are applied. The methods relate to therapies to treat cardiac arrhythmias, such as, atrial fibrillation and scar-related ventricular tachycardia, amongst others. The affected myocardial tissues are ablated creating a plurality of lesions enabled by the nanosecond pulsed electric fields applied to either penetrating electrodes, endo-endo electrodes, or endo-epi electrodes. Different electrophysiological tests are performed to assess the application of nanosecond pulsed electric field ablation to specific desired tissue location within the heart. Test results show the potential to overcome limitations of current ablation therapies, thereby providing patients and doctors a superior treatment for cardiac arrhythmias.
Abstract:
A method of inducing local cell death in patient tissue is provided. The method includes generating first and second radiation, conveying the radiation to a focusing element, and focusing the radiation on a target with the focusing element. A system for inducing local cell death in patient tissue is also provided. The system includes a power source for generating narrowband and/or ultra-wideband radiation, and a focusing element for focusing the radiation on a target.
Abstract:
Provided herein are methods of generating a biologically effective unipolar nanosecond electric pulse by superposing two biologically ineffective bipolar nanosecond electric pulses and related aspects, such as electroporation and/or therapeutic applications of these methods to non-invasively target electrostimulation (ES) selectively to deep tissues and organs.
Abstract:
A system for treatment of biological tissues is provided. The system can deliver electric pulses to a targeted region within a biological tissue. The system includes an antenna assembly and a lens. The antenna assembly is configured to generate and direct electromagnetic radiation. The lens is configured to be positioned between a surface of the biological tissue and the antenna assembly. The lens can have a plurality of lossy portions. The lens can be configured to be adjustable to create a patient-specific desired electric field distribution by selective positioning of the plurality of lossy portions within the lens.
Abstract:
Disclosed herein are methods and devices for stimulating an immune response to a disease in a subject, which involves passing sub-microsecond long pulses of electric fields having an amplitude between 5 kV/cm and 68 kV/cm through an abnormal growth of a subject sufficient to suppress myeloid-derived suppressor cell (MDSC) or regulatory T cell (Treg) production, increase adenosine triphosphate (ATP) or high mobility group box 1 (HMGB1) production, or stimulate dendritic cell activation in the subject.
Abstract:
A method and apparatus are provided for delivering an agent into a cell through the application of nanosecond pulse electric fields (“nsPEF's”). The method includes circuitry for delivery of an agent into a cell via known methods followed by the application of nanosecond pulse electric fields to said cell in order to facilitate entry of the agent into the nucleus of the cell. In a preferred embodiment, the present invention is directed to a method of enhancing gene expression in a cell comprising the application of nanosecond pulse electric fields to said cell. An apparatus for generating long and short pulses according to the present invention is also provided. The apparatus includes a pulse generator capable of producing a first pulse having a long duration and low voltage amplitude and a second pulse having a short duration and high voltage amplitude.
Abstract:
An imaging and recordation system is provided. The system includes a high-power, focusing antenna for illuminating biological tissue. The system further includes a power source for powering the antenna. The system further includes a data acquisition module, for recording the dielectric properties of tissues illuminated by the high-power, focusing antenna. The system illuminates the tissues using ultrashort electrical pulses.
Abstract:
An apparatus and methods for performing ablation of myocardial tissues are disclosed. The apparatus includes a plurality of ablation electrode configurations to which nanosecond pulsed electric fields are applied. The methods relate to therapies to treat cardiac arrhythmias, such as, atrial fibrillation and scar-related ventricular tachycardia, amongst others. The affected myocardial tissues are ablated creating a plurality of lesions enabled by the nanosecond pulsed electric fields applied to either penetrating electrodes, endo-endo electrodes, or endo-epi electrodes. Different electrophysiological tests are performed to assess the application of nanosecond pulsed electric field ablation to specific desired tissue location within the heart. Test results show the potential to overcome limitations of current ablation therapies, thereby providing patients and doctors a superior treatment for cardiac arrhythmias.
Abstract:
Disclosed is a distortion invariant system, method and computer readable medium for detecting the presence of one or more predefined targets in an input image. The input image and a synthetic discriminant function (SDF) reference image are correlated in a shift phase-encoded fringe-adjusted joint transform correlation (SPFJTC) correlator yielding a correlation output. A peak-to-clutter ratio (PCR) is determined for the correlation output and compared to a threshold value. A predefined target is present in the input image when the PCR is greater than or equal to the threshold value.