Abstract:
An infrared temperature sensor comprises a thermopile sensing chip. The thermopile sensing chip includes a chip substrate, a thermopile sensing unit, a heater and a temperature sensing element. The thermopile sensing unit is disposed on the chip substrate, receives infrared thermal radiation from a target and outputs a corresponding infrared sensation signal. The heater is disposed on the chip substrate and used to heat the chip substrate to a working temperature. The temperature sensing element is disposed on the chip substrate, senses the working temperature of the chip substrate and outputs a corresponding working temperature signal. In operation, the infrared temperature sensor can maintain the thermopile sensing unit at the preset working temperature. Thereby, a single-point temperature calibration is sufficient to obtain more accurate measurement results in a broad environmental temperature range.
Abstract:
A dryer includes a cylinder, a heater, a motor, a temperature sensor and a controller. The heater heats air and delivers the heated air into the cylinder. The motor is used to drive the cylinder to rotate. The temperature sensor includes a thermopile array sensor and a signal processor. The thermopile array sensor is used to sense an infrared light radiated from clothing and output a sensing signal. The signal processor is used to process the sensing signal to obtain at least one of a temperature distribution uniformity and an average temperature of the clothing, and output a control signal according to the at least one of the temperature distribution uniformity and the average temperature of the clothing. The controller determines to stop the drying schedule according to the control signal. The above-mentioned dryer can stop the drying schedule automatically, so as to save energy.
Abstract:
An ultrasonic biometric sensor comprises a detection chip. The detection chip includes a substrate, an ultrasonic transducer array and a control circuit. The ultrasonic transducer array is arranged on the substrate, including a plurality of arrayed piezoelectric elements. Each piezoelectric element is disposed on a floating membrane. The floating membrane is suspended in the opening side of a cavity by at least one support arm extending transversely. The control circuit is also arranged on the substrate and electrically connected with each piezoelectric element through the support arm to control the ultrasonic transducer array to generate an ultrasonic signal and read the reflected ultrasonic signal received by the ultrasonic transducer array. The ultrasonic biometric sensor is easy to fabricate and has a high yield.
Abstract:
A dryer includes a cylinder, a heater, a motor, a temperature sensor and a controller. The heater heats air and delivers the heated air into the cylinder. The motor is used to drive the cylinder to rotate. The temperature sensor includes a thermopile array sensor and a signal processor. The thermopile array sensor is used to sense an infrared light radiated from clothing and output a sensing signal. The signal processor is used to process the sensing signal to obtain at least one of a temperature distribution uniformity and an average temperature of the clothing, and output a control signal according to the at least one of the temperature distribution uniformity and the average temperature of the clothing. The controller determines to stop the drying schedule according to the control signal. The above-mentioned dryer can stop the drying schedule automatically, so as to save energy.
Abstract:
An NDIR gas detector includes a photodetector for detecting a portion of stray visible light emitted from an incandescent lamp so as to generate an induced electrical signal, which is compared with a preset reference signal associated with a predetermined constant level of the stray visible light corresponding to a constant temperature of the lamp so as to obtain a level difference between the induced electrical signal and the reference signal. Electrical power supplied to the lamp is repeatedly regulated based on the level difference until the induced electrical signal and the reference signal have the same level, thereby stabilizing IR emission of the lamp in response to the lamp being kept at the constant temperature.
Abstract:
An infrared thermopile sensor includes a silicon cover having an infrared lens, an infrared sensing chip having duo-thermopile sensing elements, and a microcontroller chip calculating a temperature of an object. The components are in a stacked 3D package to decrease the size of the infrared thermopile sensor. The infrared sensing chip and the microcontroller chip have metal layers to shield the thermal radiation. To measure object temperature accurately under acute change in environmental temperature, this disclosure uses the duo-thermopile sensing elements, that one is the active unit for measuring the object temperature and another one is the dummy unit for compensating the effect from the package structure.
Abstract:
A temperature sensing device includes a substrate, a first reflective module, a first window cover, and a dual thermopile sensor. The first reflective module is disposed on the substrate, including a first mirror chamber with a narrow field of view (FOV), and the first reflective module focuses a thermal radiation from measured object to a first image plane in the first mirror chamber. The first window cover is disposed on the first reflective module, and the first window cover allows a selected band of the thermal radiation to pass through. The dual thermopile sensor is disposed on the substrate and located in the first mirror chamber, and the dual thermopile sensor senses a temperature data from the first image plane. Additional second reflective module, LED source plus pin hole with same FOV of dual thermopile sensor can illuminate the measured object for ease of placement of object to be heated.
Abstract:
An infrared temperature sensor comprises a first communication port and a second communication port. A plurality of infrared temperature sensors can be cascaded to each other and connected to an external host controller through the second communication port. The external host controller can set up and administer the unique addresses of the plurality of the infrared temperature sensors through the second communication port, whereby to selectively perform multicasting communication or unicasting communication with the plurality of infrared temperature sensors through the first communication port. The infrared temperature sensor further comprises a second thermopile sensing element used to sense the thermal radiation of a package structure, whereby to compensate for the measurement error induced by temperature variation of the package structure. Thus, the measurement accuracy is increased.
Abstract:
A gas stove having a temperature sensing function comprises a stove body, a temperature sensor and a gas controller. The stove body includes a burner assembly for heating a pot. The temperature sensor includes a thermopile sensor and a signal processor. The thermopile sensor senses infrared rays radiating from the pot and outputs a sensing signal. The signal processor is electrically connected with the thermopile sensor to process the sensing signal and outputs a control signal. The gas controller is electrically connected with the signal processor and adjusts a gas flow supplied to the burner assembly according to the control signal. The aforementioned gas stove senses the temperature of the pot with a non-contact manner.
Abstract:
A chip-scale infrared emitter package comprises an emitter chip and an enclosure. The emitter chip includes: a base having a central cavity; a membrane having a peripheral end, the peripheral end being isolated from a periphery of the central cavity by a loop-shaped gap; an electric resistor formed on the membrane; at least one slim supporting beam extending from the peripheral end of the membrane through the loop-shaped gap to the base; and a reflective material coated on the membrane. The enclosure has a can housing and a transparent window plate. The window plate cooperates with the can housing to define an enclosed vacuum chamber. The emitter chip is mounted in the enclosed vacuum chamber. The enclosed vacuum chamber has a pressure less than 0.01 torr.