Abstract:
A voltage converter circuit, includes: a power switch for generating a pulse-width-modulation (PWM) signal to drive a current load, wherein the PWM signal toggles between a first level and a second level; a sensing pin, receiving a first sensing signal when the PWM signal is at the first level, and receiving a second sensing signal when the PWM signal is at the second level; a parameter sampling and setting unit, having an input terminal coupling to the sensing pin, generating a default current or a default voltage on the sensing pin and sampling the second sensing signal to generate a sampling signal when the PWM signal is at the second level, and holding the sampling signal to set a parameter of the voltage converter circuit when the PWM signal is at the first level.
Abstract:
A linearly dimming circuit of a light-emitting device, includes a diming signal processing unit, having a dimming signal input terminal and a current setting output terminal, wherein the dimming signal input terminal receives a luminance percentage setting to set a luminance of the light-emitting device to be a maximal luminance multiplying the luminance percentage setting, the dimming signal processing unit generates a current percentage setting according to the luminance percentage setting, the current setting output terminal outputs a driving current setting which sets the driving current to be a maximal driving current multiplying the current percentage setting; a light-emitting device driver stage, having a current setting input terminal and a driving current output terminal, wherein the current setting input terminal couples to the current setting output terminal and receives the driving current setting, the driving current output terminal outputs the driving current to the light-emitting device.
Abstract:
For thermal compensation for an intrinsic element in a system, a circuit and method are proposed to predict the temperature variation caused by power loss of the intrinsic element, in addition to sense the external environment temperature variation of the intrinsic element, and thus sense the operational temperature of the intrinsic element more precisely.
Abstract:
An oscillator generates a clock signal according to a voltage, a current and a capacitance, and a frequency jitter circuit and method use a random number to modulate the voltage, the current or the capacitance, or a count value to modulate the capacitance, to jitter the frequency of the clock signal.
Abstract:
A power-factor-improving circuit and method for an offline converter block the DC component and obtain the AC component of an input voltage of the offline converter. The AC component is superpositioned onto a DC bias signal to generate a dimming signal for the offline converter to adjust an output current of the offline converter. The offline converter has a high power factor due to the dimming signal with the AC component of the input voltage. In addition, the average of the dimming signal is determined by the DC bias signal, hence the output current can be precisely controlled according to the DC bias signal.
Abstract:
A bus configuration system includes a plurality of driver integrated circuits (ICs) coupled sequentially on a daisy chain, and a bus controller coupled to the plurality of driver ICs. Each driver IC includes a plurality of ports. The bus controller is used to generate a port definition code for configuring each port of the each driver IC. The bus controller includes a clock output port used to output a clock signal and a data output port used to output a data signal. When a port of the plurality of ports detects the clock signal, the port is configured as a clock input port.
Abstract:
An electronic device includes two speakers, a single functional chip, a parameter extraction circuit, an audio processing module, a gain adjusting circuit and a current detecting unit. The current detecting unit is disposed in the functional chip for detecting the driving current of the two speakers. The functional chip provides the driving voltage of the two speakers based on an output signal and converts the analogue current/voltages of the two speakers into digital current/voltages. The parameter extraction circuit acquires the parameter of each speaker based on the digital current/voltages. The audio processing module acquires the gains of various physical quantities based on the parameter of each speaker and determines the final gain of each physical quantity. The gain adjusting circuit provides the output signal by adjusting the gain of an input signal based on the final gain of each physical quantity.
Abstract:
A buck converter includes a quick response circuit, a compensator coupled to an output node, an interleaving logic circuit coupled to the compensator, a plurality of on-time generators, a plurality of OR gates coupled to the corresponding on-time generator, a plurality of power stages coupled to the corresponding OR gates, a plurality of inductors and an output capacitor. Each on-time generator is coupled to the interleaving logic circuit, an input node and the output node. The quick response circuit includes a voltage droop sensor coupled to the output node, a load frequency sensor coupled to the output node, a quick response signal generator coupled to the voltage droop sensor, a maximum quick response signal generator coupled to the voltage droop sensor and the load frequency sensor, an AND gate coupled to the quick response signal generator, the maximum quick response signal generator and the plurality of OR gates.
Abstract:
A voltage converter controller, adapted to a voltage converter circuit, includes a power switch controller and a dead-time determining circuit. The power switch controller receives a PWM signal and outputs a high-side control signal and a low-side control signal accordingly to control the conduction and cut-off of a high-side power switch and a low-side power switch respectively. When the power switch controller starts to control the low-side power switch cut-off, after a first dead-time, the power switch controller starts to control the high-side power switch conducting. The dead-time determining circuit detects a current of the low-side power switch to be larger or smaller than a threshold current when the low-side power switch is conducted, and determines the first dead-time to be a first value or a second value accordingly.
Abstract:
A voltage converter controller, adapted to a voltage converter circuit, includes a power switch controller and a dead-time determining circuit. The power switch controller receives a PWM signal and outputs a high-side control signal and a low-side control signal accordingly to control the conduction and cut-off of a high-side power switch and a low-side power switch respectively. When the power switch controller starts to control the low-side power switch cut-off, after a first dead-time, the power switch controller starts to control the high-side power switch conducting. The dead-time determining circuit detects a current of the low-side power switch to be larger or smaller than a threshold current when the low-side power switch is conducted, and determines the first dead-time to be a first value or a second value accordingly.