Abstract:
Methods of making macroporous cation exchange resins are described. The macroporous cation exchange resins are in the form of particles such as beads that contain a hydrophilic, crosslinked, (meth)acrylic-type polymeric material. Additionally, methods of purifying a positively charged material using the macroporous cation exchange resins, methods of making chromatographic columns that contain the macroporous cation exchange resins, methods of making filter elements that contain the macroporous cation exchange resins, and methods of making porous composite materials that contain the macroporous cation exchange resins are described.
Abstract:
Methods of making macroporous cation exchange resins are described. The macroporous cation exchange resins are in the form of particles such as beads that contain a hydrophilic, crosslinked, (meth)acrylic-type polymeric material. The macroporous cation exchange resins are prepared using an inverse suspension polymerization process in the presence of a water soluble, organic, aliphatic porogen having at least three hydroxy groups.
Abstract:
Semi-interpenetrating polymeric networks are described. More specifically, the semi-interpenetrating polymeric networks include at least two polymers that are closely associated. The first polymer is an ionic polymer that is not crosslinked. The second polymer is a cross-linked polymer that can be either another ionic polymer or a non-ionic polymer. Methods of making the semi-interpenetrating polymeric networks, articles containing the semi-interpenetrating polymeric networks, and methods of using the semi-interpenetrating polymeric networks are also described. The semi-interpenetrating polymeric networks can function as ion exchange resins.
Abstract:
Porous polymeric resins, reaction mixtures and methods that can be used to prepare the porous polymeric resins, and uses of the porous polymeric resin are described. More specifically, the polymeric resins typically have a hierarchical porous structure plus reactive groups that can be used to interact with or react with a variety of different target compounds. The reactive groups can be selected from an acidic group or a salt thereof, an amino group or salt thereof, a hydroxyl group, an azlactone group, a glycidyl group, or a combination thereof.
Abstract:
Ligand functionalized substrates, methods of making ligand functionalized substrates, and methods of using functionalized substrates are disclosed.
Abstract:
Methods of making macroporous cation exchange resins are described. The macroporous cation exchange resins are in the form of particles such as beads that contain a hydrophilic, crosslinked, (meth)acrylic-type polymeric material. The macroporous cation exchange resins are prepared using an inverse suspension polymerization process in the presence of a water soluble, organic, aliphatic porogen having at least three hydroxy groups.
Abstract:
Porous polymeric resins, reaction mixtures and methods that can be used to prepare the porous polymeric resins, and uses of the porous polymeric resin are described. More specifically, the polymeric resins typically have a hierarchical porous structure plus reactive groups that can be used to interact with or react with a variety of different target compounds. The reactive groups can be selected from an acidic group or a salt thereof, an amino group or salt thereof, a hydroxyl group, an azlactone group, a glycidyl group, or a combination thereof.
Abstract:
A single pass simulated moving bed apparatus and methods are described for continuously separating a target molecule from a liquid mixture, using a simulated moving bed system. The simulated moving bed system includes a plurality of filter cartridge modules in serial fluid communication. Each filter cartridge module includes a volume of stationary phase particulates adjacent a porous substrate layer. The volume of stationary phase particulates has a bed height of less than 1 centimeter.
Abstract:
A process for preparing a polarizer is described whereby an article comprising an oriented, vinylalcohol polymer film layer, and an acid donor layer comprising a photoacid generator, is exposed to radiant energy at a temperature sufficient to effect a partial dehydration of the vinylalcohol polymer to a vinylalcohol/poly(acetylene) copolymer.