Abstract:
A device for controlling ISG logic is mounted in a vehicle equipped with an ISG system. The device includes a brake pedal switch, a shift lever switch that shows the current state of a gear of the vehicle, an inclination sensor that is mounted in the vehicle and measures the inclination of a road where the vehicle is positioned, a controller that internally controls the vehicle to an N (Neutral) state, regardless of the gear range shown by the shift lever switch, for the vehicle on a downhill, in accordance with the measured inclination, and an engine unit that performed idle stop when the brake pedal becomes ON, with the gear of the vehicle at a D (Drive) sate, and restarts the stopped engine when the brake pedal becomes OFF, with the gear of the vehicle at the D state.
Abstract:
An ISG entry apparatus and method is capable of operating ISG logic without employing a battery sensor. The ISG entry apparatus includes a starting voltage detection unit detecting a starting voltage of an ISG vehicle having no battery sensor mounted therein, a cooling water detection unit detecting a cooling water temperature of the ISG vehicle, an ISG entry frequency detection unit detecting an ISG entry frequency of the ISG vehicle, an accumulated charge amount detection unit detecting an accumulated charge amount of the ISG vehicle during driving, a starting number counting unit counting the starting number of the ISG vehicle, and an engine control unit determining whether or not to enter a mode in which an ISG operation is performed based on the starting voltage, the cooling water temperature, the ISG entry frequency, the accumulated charge amount, and the starting number and performing an ISG operation.
Abstract:
An apparatus and method for guiding deactivation of a battery sensor of ISG vehicles is capable of informing a driver of operation prohibition when the battery sensor mounted on the ISG vehicles is deactivated. The apparatus for guiding deactivation of a battery sensor of ISG vehicles includes a display unit displaying that the battery sensor is deactivated; and an engine control unit determining whether the battery sensor normally operates or not, and controlling a display operation of the display unit based on the determination result.
Abstract:
An ISG system prevents fuel consumption due to unnecessary idling, by controlling the start of an engine, in accordance with engine stop conditions and restart conditions of a vehicle equipped with an automatic transmission. A method includes determining whether prior conditions for engine stop in an engine controller when an engine is in operation is satisfied, determining whether the engine can be stopped, when the prior conditions for engine stop are satisfied, determining whether engine stop conditions is satisfied, when the engine can be stopped, stopping the engine that is in operation, when the engine stop conditions are satisfied, determining whether key start conditions are satisfied, when the engine is stopped, determining whether restart is possible, when the key start conditions are not satisfied, determining whether conditions for restart are satisfied, when restart is possible, and restarting the engine, when the restart conditions are satisfied.
Abstract:
The invention may provide a temperature sensor device that includes an analog temperature sensor to generate a first base-emitter voltage and a second base-emitter voltage, and an analog-to-digital converter (ADC) to sample at the voltages and generate corresponding digital values. The temperature sensor device may also include a logic unit to calculate a digital temperature code from the digital values using a digital virtual reference.
Abstract:
The ISG (Idle Stop & Go) system may include a vehicle information receiving unit receiving a vehicle information, and a control unit including an ISG operation logic which performs an idle stop when a preset idle stop condition is satisfied and restarts the engine when a preset restart condition of the engine is satisfied, and an ISG deactivation determination logic which determines whether a preset ISG deactivation condition is satisfied or not, based on the accumulated number of determinations that the idle stop condition is not satisfied, the accumulated number of idle stops, and the accumulated number of determinations that a performance time of the idle stop is smaller than a preset idle stop retention time, and deactivates the ISG operation logic when the ISG deactivation condition is satisfied.
Abstract:
An ISG restart control device of an ISG vehicle may include a seatbelt state detecting unit that detects fastening/unfastening state of a seatbelt, a door state detecting unit that detects opening/closing state of a door, a brake pedal state detecting unit that detects an operation state of a brake pedal, and a control unit that forcibly idle-stops or restarts an engine by receiving a driving state information of the vehicle and restricts restarting of the engine in accordance with the fastening/unfastening of the seatbelt, the opening/closing of the door, and the operation state of the brake pedal which may be detected by the seatbelt state detecting unit, the door state detecting unit, and the brake pedal state detecting unit, in the restarting.
Abstract:
An ISG (Idle Stop and Go) display device of an ISG vehicle may include a driving information detecting unit that detects driving information of the vehicle, a memory unit that stores notification about ISG of the vehicle, a control unit that executes the ISG and detects situations of an operation and an abnormality of the ISG by using the driving information of the vehicle which may be input from the driving information detecting unit, and receives the notifications about the ISG which correspond to the situations from the memory unit, and a display unit that may be controlled by the control unit to display the notifications about the ISG in accordance with the situations.
Abstract:
A method and a HAC system controls a hill-state assist control (HAC) operation when restarting an engine of the vehicle having an idle stop and go (ISG) system for an automatic transmission. The method includes starting restarting of the engine by the ISG system and an HAC operation, monitoring the RPM of the engine, and releasing the HAC operation in a case where the RPM of the engine meets an HAC release condition, and maintaining the HAC operation until the HAC release condition is met in a case where the RPM of the engine does not meet the HAC release condition.
Abstract:
A device controls ISG (Idle Stop & Go) logic mounted in a vehicle equipped with an ISG system. The device includes a transmitting unit that shows the current state of a gear in the vehicle and controls the hydraulic pressure of a transmission in idle stop or restarting an engine, a driving unit that performs the idle stop when the pedal of a brake becomes ON, with the gear at a D (Drive)-range, and restarts the engine when the pedal of the brake becomes OFF, with the gear of the vehicle at the D-range, and a brake unit that controls movement of the vehicle by controlling the hydraulic pressure of the brake, in which brake unit controls the hydraulic pressure of a brake to be kept for a predetermined time from when the pedal of the brake becomes OFF.