摘要:
A method is disclosed for modifying a device dimension extraction model. After collecting in-line data with regard to at least one feature of a device for one or more layouts, a proximity and linearity effect with regard to the feature based on the collected data is determined. Further, the device's electrically active region (OD) drawn size effect with regard to the feature is also determined based on the collected data. The dimension extraction model is modified based on at least two of the above three characterized effects.
摘要:
A method is disclosed for modifying a device dimension extraction model. After collecting in-line data with regard to at least one feature of a device for one or more layouts, a proximity and linearity effect with regard to the feature based on the collected data is determined. Further, the device's electrically active region (OD) drawn size effect with regard to the feature is also determined based on the collected data. The dimension extraction model is modified based on at least two of the above three characterized effects.
摘要:
The present invention provides a method for fabricating elevated and drain structures on a substrate. A first insulating layer is formed over a silicon substrate. A first barrier layer is formed over the first insulating layer. The first barrier layer, the first insulating layer and the substrate are patterned to form a trench. Ions are implanted into the substrate in the trench. A gate oxide layer is formed on the substrate in the trench. A polysilicon layer is deposited over the gate oxide layer and the barrier layer. The polysilicon layer is planarized using a chemical mechanical polishing process (CMP) stopping on the barrier layer to form a novel recessed gate. The barrier layer and the first insulating layer are removed. Lightly doped source/drain regions (LDD) are formed adjacent to the recessed gate. Spacers are formed on the sidewalls of the recessed gate. Source and drain regions are formed adjacent to the spacers. Salicide layers are formed on the source and drain regions and on the top of the recessed gate.
摘要:
Semiconductor devices and manufacturing and design methods thereof are disclosed. In one embodiment, a semiconductor device includes an active FinFET disposed over a workpiece comprising a first semiconductive material, the active FinFET comprising a first fin. An electrically inactive FinFET structure is disposed over the workpiece proximate the active FinFET, the electrically inactive FinFET comprising a second fin. A second semiconductive material is disposed between the first fin and the second fin.
摘要:
An apparatus for and a method of forming a semiconductor structure is provided. The apparatus includes a substrate holder that maintains a substrate such that the processing surface is curved, such as a convex or a concave shape. The substrate is held in place using point contacts, a plurality of continuous contacts extending partially around the substrate, and/or a continuous ring extending completely around the substrate. The processing may include, for example, forming source/drain regions, channel regions, silicides, stress memorization layers, or the like.
摘要:
A method includes forming an ESD diode including performing an epitaxy growth to form an epitaxy region comprising silicon and substantially free from germanium. The epitaxy region is doped with a p-type impurity to form a p-type region, wherein the p-type region forms an anode of the ESD diode.
摘要:
A dual work function semiconductor device and method for fabricating the same are disclosed. In one aspect, a device includes a first and second transistor on a first and second substrate region. The first and second transistors include a first gate stack having a first work function and a second gate stack having a second work function respectively. The first and second gate stack each include a host dielectric, a gate electrode comprising a metal layer, and a second dielectric capping layer therebetween. The second gate stack further has a first dielectric capping layer between the host dielectric and metal layer. The metal layer is selected to determine the first work function. The first dielectric capping layer is selected to determine the second work function.
摘要:
A method for forming salicide contacts and polycide conductive lines in integrated circuits is described which employs the ion implantation of both silicon and arsenic into polysilicon structures and into source/drain MOSFET elements is described. The method is effective in reducing gate-to-source/drain bridging in the manufacture of sub-micron CMOS integrated circuits and improving the conductivity of sub-micron wide polycide lines. Silicon is implanted into the polysilicon and into the source/drain surfaces forming a amorphized surface layer. Next a low dose, low energy arsenic implant is administered into the amorphized layer. The low dose shallow arsenic implant in concert with the amorphized layer initiates an equalized formation of titanium silicide over both NMOS and PMOS devices in CMOS integrated circuits without degradation of the PMOS devices. Amorphization by the electrically neutral silicon ions permits the use of a lower dose of arsenic than would be required if arsenic alone were implanted. In addition to amorphization, the implanted silicon prevents the formation of microvoids by providing silicon towards titanium silicide formation. The combined amorphization effect of the silicon and arsenic implants also facilitates a silicide phase transition on sub-micron wide polycide lines thereby improving their conductivity.