Abstract:
The present invention generally relates to organic photosensitive optoelectronic devices. More specifically, it is directed to organic photosensitive optoelectronic devices having a photoactive organic region containing encapsulated nanoparticles that exhibit plasmon resonances. An enhancement of the incident optical field is achieved via surface plasmon polariton resonances. This enhancement increases the absorption of incident light, leading to a more efficient device.
Abstract:
A device is provided having a first electrode, a second electrode, a first photoactive region having a characteristic absorption wavelength λ1 and a second photoactive region having a characteristic absorption wavelength λ2. The photoactive regions are disposed between the first and second electrodes, and further positioned on the same side of a reflective layer, such that the first photoactive region is closer to the reflective layer than the second photoactive region. The materials comprising the photoactive regions may be selected such that λ1 is at least about 10% different from λ2. The device may further comprise an exciton blocking layer disposed adjacent to and in direct contact with the organic acceptor material of each photoactive region, wherein the LUMO of each exciton blocking layer other than that closest to the cathode is not more than about 0.3 eV greater than the LUMO of the acceptor material.
Abstract:
A device is provided having a first electrode, a second electrode, a first photoactive region having a characteristic absorption wavelength λ1 and a second photoactive region having a characteristic absorption wavelength λ2. The photoactive regions are disposed between the first and second electrodes, and further positioned on the same side of a reflective layer, such that the first photoactive region is closer to the reflective layer than the second photoactive region. The materials comprising the photoactive regions may be selected such that λ1 is at least about 10% different from λ2. The device may further comprise an exciton blocking layer disposed adjacent to and in direct contact with the organic acceptor material of each photoactive region, wherein the LUMO of each exciton blocking layer other than that closest to the cathode is not more than about 0.3 eV greater than the LUMO of the acceptor material.
Abstract:
A transistor is disclosed comprising a collector, which itself comprises a small molecule organic material. A base comprising a doped small molecule organic material that forms a junction with the collector and an emitter comprising a small molecule organic material that forms a junction with the base is further disclosed. Electrodes are coupled to the collector, base and emitter. The transistor is bipolar.
Abstract:
Organic light emitting devices are disclosed which are comprised of a heterostructure for producing electroluminescence wherein the heterostructure is comprised of an emissive layer containing a phosphorescent dopant compound. For example, the phosphorescent dopant compound may be comprised of platinum octaethylporphine (PtOEP), which is a compound having the chemical structure with the formula:
Abstract:
The present invention relates to organic lasers. More specifically, the present invention is directed to an organic laser that provides a self-stimulated source of coherent radiation originating from organic microcavity polaritons. The organic polariton laser of the present invention comprises a substrate, a resonant microcavity comprising an organic polariton emission layer; and an optical pump. In preferred embodiments the optical pump is a microcavity OLED allowing for the fabrication of a self-contained or integrated device.
Abstract:
The present invention generally relates to organic photodetectors. Further, it is, directed to an optimized organic photodetector having reduced dark current and high efficiency and response time.
Abstract:
Solid state photosensitive devices including photovoltaic devices are provided which comprise a first electrode and a second electrode in superposed relation; and at least one isolated Light Harvesting Complex (LHC) between the electrodes. Preferred photosensitive devices comprise an electron transport layer formed of a first photoconductive organic semiconductor material, adjacent to the LHC, disposed between the first electrode and the LHC; and a hole transport layer formed of a second photoconductive organic semiconductor material, adjacent to the LHC, disposed between the second electrode and the LHC. Solid state photosensitive devices of the present invention may comprise at least one additional layer of photoconductive organic semiconductor material disposed between the first electrode and the electron transport layer; and at least one additional layer of photoconductive organic semiconductor material, disposed between the second electrode and the hole transport layer. Methods of generating photocurrent are provided which comprise exposing a photovoltaic device of the present invention to light. Electronic devices are provided which comprise a solid state photosensitive device of the present invention.
Abstract:
A spa cover lift is provided that includes a movable frame adapted for pivotable attachment to the side of a spa, one or more struts for positioning the movable frame between extended and retracted positions with respect to the side of the spa, and apparatus for receiving a spa cover from the spa and retaining the cover adjacent the movable frame. The struts are operable to displace the movable frame to an extended position that is substantially coplanar with respect to the top surface of the spa to provide a surface onto which a spa user can slide a spa cover. The struts are further operable to displace the movable frame to a retracted position against the side of the spa for optimally storing the device along with the spa cover in a compact configuration when the spa is in use against the side of the spa.
Abstract:
The present invention relates to organic light emitting devices (OLEDs), and more specifically to OLEDS that emit light using a combination of fluorescent emitters and phosphorescent emitters for the efficient utilization of all of the electrically generated excitons.