Abstract:
Systems and methods are described for coordinating transmissions in distributed wireless systems via user clustering. For example, a method according to one embodiment of the invention comprises: measuring link quality between a target user and a plurality of distributed-input distributed-output (DIDO) distributed antennas of base transceiver stations (BTSs); using the link quality measurements to define a user cluster; measuring channel state information (CSI) between each user and each DIDO antenna within a defined user cluster; and precoding data transmissions between each DIDO antenna and each user within the user cluster based on the measured CSI.
Abstract:
A computer-implemented system and method for performing video compression are described. For example, a method according to one embodiment comprises: encoding a first plurality of video frames or portions thereof, wherein each encoded video frame or portion thereof is dependent on a previously-encoded video frame or portion thereof, respectively; transmitting the first plurality of encoded video frames or portions to a client device; receiving feedback information from the client device, the feedback information usable to determine whether data contained in the video frames or portions has not been successfully received and/or decoded; in response to detecting that a video frame or portion thereof has not been successfully received and/or decoded, encoding a current video frame or portion thereof to be dependent on a previously-encoded video frame or portion thereof known to have been successfully received and/or decoded on the client device; and transmitting the current video frame or portion thereof to the client device.
Abstract:
A touch-screen apparatus and method are described for controlling an online video game. For example, one embodiment of a touch-screen apparatus comprises: a touch-screen display for displaying images and receiving user input in response to a user touching the touch screen display; a network interface for establishing a network connection with a gaming server executing a video game in response to user input from the apparatus, the gaming server compressing video output from the video game to generate interactive compressed streaming video, and transmitting the interactive compressed streaming video generated by the video game over the network connection to the touch-screen apparatus; a memory for storing program code and a processor for processing the program code to generate a touch-screen graphical user interface (GUI) comprising: a plurality of user input elements providing user input in response to the user selecting the user input elements on the touch screen display; wherein the user input is transmitted from the touch-screen apparatus to the gaming server to control the execution of the video game.
Abstract:
A computer-implemented system and method are described for managing audio chat for an online video game or application. For example, a system according to one embodiment comprises: an online video game or application execution engine to execute an online video game or application in response to input from one or more users of the video game or application and to responsively generate audio and video of the video game or application; and a chat subsystem to establish audio chat sessions with the one or more users and one or more spectators to the video game or application, the chat subsystem establishing a plurality of audio chat channels including a spectator channel over which the spectators participate in audio chat and a user channel over which the users participate in audio chat.
Abstract:
A touch-screen apparatus comprises: a touch-screen display for displaying images and receiving user input in response to a user touching the touch screen display; a network interface for establishing a network connection with a gaming server executing a video game in response to user input from the apparatus, the gaming server compressing video output from the video game to generate interactive compressed streaming video, and transmitting the interactive compressed streaming video generated by the video game over the network connection to the touch-screen apparatus; a touch-screen graphical user interface (GUI) comprising: a plurality of user input elements providing user input in response to the user selecting the user input elements on the touch screen display; wherein the user input is transmitted from the touch-screen apparatus to the gaming server to control the execution of the video game.
Abstract:
Systems and methods are described for wireless backhaul in a multiple antenna system (MAS) with multi-user (MU) transmissions (“MU-MAS”). For example, a multiuser (MU) multiple antenna system (MAS) of one embodiment comprises: one or more centralized units communicatively coupled to multiple distributed transceiver stations via a network; the network consisting of wireline or wireless links or a combination of both, employed as a backhaul communication channel; the centralized unit transforming the N streams of information into M streams of bits, each stream of bits being a combination of some or all N streams of information; the M streams of bits being sent over the network to the distributed transceiver stations; the distributed transceiver stations simultaneously sending the streams of bits over wireless links to at least one client device such that at least one client device receives at least one of the original N streams of information.
Abstract:
A video repository unit includes a plurality of disk drives arranged in a redundant array and circuitry to control writing/reading of video programs to/from the redundant array. A wireless transceiver receives video programs and transmits a selected video program to a remote viewer responsive to a request received by the wireless transceiver. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
Abstract:
A system and method are described for performing motion capture on a subject. For example, a computer-implemented method according to one embodiment of the invention comprise: creating a scalar field for the three-dimensional (3-D) capture volume of the subject; generating a surface mesh for the scalar field; retaining good vertices and removing bad vertices of the surface mesh; and storing the good vertices for use in subsequent reconstruction of the motion of the subject. Another computer-implemented method comprises: capturing a series of image frames of the subject over a period of time each frame each frame having a plurality of vertices defining a captured surface of the subject; establishing a reference frame having one or more of the plurality of vertices; performing frame-to-frame tracking to identify vertices within the N′th frame based on the (N−1)′th frame or an earlier frame; and performing reference-to-frame tracking to identify vertices within the N′th frame based on the reference frame to counter potential drift between the frames. Yet another computer-implemented method comprises: capturing motion capture data including a plurality of images of the N vertices during a motion capture session; retrospectively identifying X of the N vertices to track across the plurality of images where X
Abstract:
A system and method are described for dynamically adapting the communication characteristics of a multiple antenna system (MAS) with multi-user (MU) transmissions (“MU-MAS”). For example, a method according to one embodiment of the invention comprises: transmitting a training signal from each antenna of a base station to each of a plurality of wireless client devices, each of the client devices analyzing each training signal to generate channel characterization data, and receiving the channel characterization data at the base station; computing a plurality of MU-MAS precoder weights based on the channel characterization data, the combined MU-MAS precoder weights comprising a MU-MAS channel matrix; determining instantaneous or statistical channel quality (“link quality metric”) for the wireless client devices using mutual information of MU-MAS links or singular values of the MU-MAS composite channel matrix; determining a subset of users and a MU-MAS transmission mode based on the link quality metric; precoding data using the MU-MAS precoder weights to generate precoded data signals for each antenna of the base station; and transmitting the precoded data signals through each antenna of the base station to each respective client device within the selected subset.
Abstract:
A network for wireless transmission of a media data in a building includes a plurality of access points. A first access point receives the media data from a source and transmits the media data downstream at a first data rate. A plurality of additional access points is distributed about the building, each of which includes an upstream transceiver to receive the media content on a first channel and a downstream transceiver to re-transmit the media content at substantially the first data rate on a second channel. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.