Abstract:
Various embodiments are generally directed to an apparatus, method and other techniques for separating a group of polygons from a viewpoint of a scene into a dependent subgroup of polygons or a non-dependent subgroup of polygon and spatially sorting the non-dependent subgroup of polygons and the dependent group of polygons separately to form a sorted group of polygons.
Abstract:
An apparatus, method and system is described herein for efficiently balancing performance and power between processing elements based on measured workloads. If a workload of a processing element indicates that it is a bottleneck, then its performance may be increased. However, if a platform or integrated circuit including the processing element is already operating at a power or thermal limit, the increase in performance is counterbalanced by a reduction or cap in another processing elements performance to maintain compliance with the power or thermal limit. As a result, bottlenecks are identified and alleviated by balancing power allocation, even when multiple processing elements are operating at a power or thermal limit.
Abstract:
In one embodiment, the present invention includes a processor having a first domain with a first compute engine and a second domain with a second compute engine, where each of these domains can operate at an independent voltage and frequency. A first logic may be present to update a power bias value used to control dynamic allocation of power between the first and second domains based at least in part on a busyness of the second domain. In turn, a second logic may dynamically allocate at least a portion of a power budget for the processor between the domains based at least in part on this power bias value. Other embodiments are described and claimed.
Abstract:
In one embodiment, the present invention includes a processor having a first domain with a first compute engine and a second domain with a second compute engine, where each of these domains can operate at an independent voltage and frequency. A first logic may be present to update a power bias value used to control dynamic allocation of power between the first and second domains based at least in part on a busyness of the second domain. In turn, a second logic may dynamically allocate at least a portion of a power budget for the processor between the domains based at least in part on this power bias value. Other embodiments are described and claimed.
Abstract:
Executing a single instruction/multiple data (SIMD) instruction of a program to process a vector of data wherein each element of the packet vector corresponds to a different received packet.
Abstract:
In accordance with disclosed embodiments, there are provided methods, systems, and apparatuses for implementing hardware of a virtualized processor based system detecting a specified type of memory access to an identified region of memory and in response to the detecting generating an interrupt for a virtual machine monitor (VMM) of the virtualized processor based system.
Abstract:
A system and method for high performance secure access to a trusted platform module on a hardware virtualization platform, which includes Virtual Machine Monitor (VMM) managed components coupled to the VMM and a plurality of Virtual Machines (VMs). One of the VMM managed components is a Trusted Platform Module (TPM) Each virtual machine includes a guest Operating System, a TPM device driver (TDD), and at least one security application. The VMM creates an intra-partition in memory for each TDD such that other code and information at a same or higher privilege level in the VM cannot access the TDD's memory contents. The VMM also maps access only from the TDD to a TPM register space specifically designated for the VM requesting access. Contents of the TPM requested by the TDD are stored in an exclusively VMM-managed protected page table that provides hardware-based memory isolation for the TDD.
Abstract:
A system and method for high performance secure access to a trusted platform module on a hardware virtualization platform. The virtualization platform including Virtual Machine Monitor (VMM) managed components coupled to the VMM. One of the VMM managed components is a TPM (Trusted Platform Module). The virtualization platform also includes a plurality of Virtual Machines (VMs). Each of the virtual machines includes a guest Operating System (OS), a TPM device driver (TDD), and at least one security application. The VMM creates an intra-partition in memory for each TDD such that other code and information at a same or higher privilege level in the VM cannot access the memory contents of the TDD. The VMM also maps access only from the TDD to a TPM register space specifically designated for the VM requesting access. Contents of the TPM requested by the TDD are stored in an exclusively VMM-managed protected page table that provides hardware-based memory isolation for the TDD.
Abstract:
A system and method for high performance secure access to a trusted platform module on a hardware virtualization platform. The virtualization platform including Virtual Machine Monitor (VMM) managed components coupled to the VMM. One of the VMM managed components is a TPM (Trusted Platform Module). The virtualization platform also includes a plurality of Virtual Machines (VMs). Each of the virtual machines includes a guest Operating System (OS), a TPM device driver (TDD), and at least one security application. The VMM creates an intra-partition in memory for each TDD such that other code and information at a same or higher privilege level in the VM cannot access the memory contents of the TDD. The VMM also maps access only from the TDD to a TPM register space specifically designated for the VM requesting access. Contents of the TPM requested by the TDD are stored in an exclusively VMM-managed protected page table that provides hardware-based memory isolation for the TDD.
Abstract:
An apparatus and method for programmable depth stencil pipeline stage and shading. For example, one embodiment of a graphics processing apparatus comprises: a rasterizer to generate a plurality of pixel blocks, one or more of which overlap one or more primitives; programmable depth stencil circuitry to perform depth stencil tests on the pixels which overlap the one or more primitives to identify pixels which pass the depth stencil tests; and thread dispatch circuitry to dispatch pixel shader threads to perform pixel shading operations on those pixels which pass the depth stencil tests, the thread dispatch circuitry including thread dispatch recombine logic to combine pixels which have passed the depth stencil test from multiple pixel blocks into a set of pixel shader threads to be executed concurrently on single instruction multiple data (SIMD) hardware.