Abstract:
An endovascular prosthesis includes a tubular body and a mobile external coupling. The tubular body includes a graft material and stents coupled thereto, a forms a lumen therethrough. The mobile external coupling extends outwardly from the tubular body. The mobile external coupling includes a graft material and is generally frustoconically shaped. The mobile external coupling includes a base coupled to the tubular body, a top spaced from the tubular body, and a coupling lumen disposed between the base and the top, wherein the coupling lumen is in flow communication with the body lumen. A cylindrical sealing cuff of graft material is attached to and extends from the top of the mobile external coupling towards the tubular body within the coupling lumen. The sealing cuff is configured to contact a portion of a branch vessel prosthesis and thereby provides an elongated interference seal between the branch vessel prosthesis and the mobile external coupling.
Abstract:
An endovascular stapler delivery apparatus having a continuous geometrically non-symmetrical delivery rail operable to guide a stapling device to one or more stapling locations within a body vessel is disclosed. The delivery rail includes a first elongated leg, a second elongated leg in parallel with the first leg, and a self-expanding distal loop extending between a distal end of the first leg and a distal end of the second leg. The distal loop self-expands at a delivery site within the vessel at an angle with a longitudinal axis of the vessel and includes at least first and second portions that abut the vessel at opposing and longitudinally offset locations of a wall of the vessel. The self-expanding distal loop operates to press and align the stapling device against one or more stapling locations.
Abstract:
A stent graft system and method of use includes a stent graft for fixation at an attachment site with graft material defining at least one opening having an opening perimeter; a support attached to the graft material; a guide rail attached around the opening perimeter; and a helical anchor having a plurality of coils with a point at one end. The plurality of coils are rotatable around the guide rail to cause the pointed end of the coils to penetrate the graft material and the adjacent tissue in contact with the stent graft to sew the stent graft to the attachment site.
Abstract:
A system and method for delivering a self-expanding stent graft within a segment of a body vessel having a branch vessel extending therefrom. The graft includes one or more self-expanding stents for anchoring the graft to the vessel wall and has a stent-free body portion positionable across the branch vessel. The graft delivery system includes an expandable fenestration support structure at the distal end thereof that is positioned within the graft during delivery. Once the graft has been delivered and expanded into apposition with the vessel wall, the support structure may be expanded therein to press the unsupported body portion of the graft against the branch vessel such that a separate puncture device may be delivered to create a fenestration in the graft for perfusion of the branch vessel. In addition, the expanded fenestration support structure reduces any wrinkles in the graft without a secondary procedure.
Abstract:
A method includes deploying a fenestration segment stent-graft into a main vessel such that a fenestration section of the fenestration segment stent-graft covers a first branch vessel emanating from the main vessel. The fenestration segment stent-graft includes a proximal section, a distal section, and the fenestration section attached to and between the proximal section and the distal section. The fenestration section has a greater resistance to tearing than the proximal section and the distal section facilitating formation of a collateral opening aligned with the branch vessel in the fenestration section.
Abstract:
Catheter based systems and methods for securing tissue including the annulus of a mitral valve. The systems and methods employ catheter based techniques and devices to plicate tissue and perform an annuloplasty.
Abstract:
Catheter based systems and methods for securing tissue including the annulus of a mitral valve. The systems and methods employ catheter based techniques and devices to plicate tissue and perform an annuloplasty.
Abstract:
A method includes covering ostai of branch vessels emanating from a main vessel and an aneurysm with a high metal to vessel ratio stent. A metal to vessel ratio of the high metal to vessel ratio stent is sufficiently high to encourage tissue ingrowth around the high metal to vessel ratio stent yet is sufficiently low to ensure perfusion of the branch vessels through the high metal to vessel ratio stent. The ingrowth of tissue provides secure fixation and sealing of the high metal to vessel ratio stent to the main vessel and remodels and essentially eliminates the aneurysm. Further, as the entire high metal to vessel ratio stent is permeably, the high metal to vessel ratio stent is deployed without having to rotationally position the high metal to vessel ratio stent.
Abstract:
Endolumenally sealing a zone around the puncture and dilation area of a stent-graft fenestration or sealing the juncture between two lumens with an expandable sealant delivery device. In exemplary embodiments, an expandable sealant delivery device includes a catheter mounted balloon, which has a microporous membrane or a plurality of pores suitable for delivering a surgical sealant.
Abstract:
A method includes deploying a bloused stent-graft into a main vessel such that a bloused section of the bloused stent-graft covers a branch vessel emanating from the main vessel. The bloused section includes loose graft cloth. A pressure differential between the main vessel and the branch vessel causes the bloused section to be forced into an ostium of the branch vessel creating a pocket aligned with the branch vessel. A distal tip of a puncture device is located in the pocket and thus aligned with the branch vessel. An outward force is applied to the puncture device to cause the distal tip of the puncture device to fenestrate the bloused section thus creating a collateral opening in the bloused section precisely aligned with the branch vessel.