Abstract:
An open architecture Magnetic Resonance Imaging Magnet with a pair of spaced annular superconducting magnet assemblies utilizing a cantilevered main magnet coil and correction magnet coil within each assembly.
Abstract:
FIG. 1 is a front perspective view of a baseball cap light showing my new design; FIG. 2 is a rear perspective view thereof; FIG. 3 is a front elevation view thereof; FIG. 4 is a rear elevation view thereof; FIG. 5 is a left side elevation view thereof; FIG. 6 is a right side elevation view thereof; FIG. 7 is a top plan view thereof; FIG. 8 is a bottom plan view thereof; and, FIG. 9 is an exploded view thereof. The dashed broken lines depict portions of the baseball cap light that form no part of the claimed design.
Abstract:
A method is provided. A first layer is provided over a substrate, the first layer comprising a first material. A patterned second layer is applied over the first layer via stamping. The second layer comprising a second material. The second layer covers a first portion of the first layer, and does not cover a second portion of the first layer. The second portion of the first layer is removed via a subtractive process while the first portion of the first layer is protected from removal by the patterned second layer.
Abstract:
Top-gate, bottom-contact organic thin film transistors are provided. The transistors may include metal bilayer electrodes to aid in charge movement within the device. In an embodiment, an organic transistor includes a drain electrode and a source electrode disposed over a first region of a substrate, a transition metal oxide layer disposed over and in direct physical contact with the drain electrode and the source electrode, an organic preferentially hole conducting channel layer disposed over the metal oxide and between the drain electrode and the source electrode, and a gate electrode disposed over the channel.
Abstract:
A wireless communication device receives a message periodically broadcast by a wireless broadcast device placed within a location, and determines a type of the location and a broadcast period of the message. The wireless communication device sets a check period for periodically checking whether the wireless communication device receives the message, and checks if a present alert mode of the wireless communication device is suitable for the type of the location in a present check period. When the present alert mode of the wireless communication device is not suitable, the wireless communication device automatically switches the present tone mode to a new tone. When the wireless communication device does not receive the message within a next check period, the wireless communication device is determined as having left the location and automatically switched back to the present alert mode from the new alert mode.
Abstract:
Arrangements of pixel components that allow for full-color devices, while using emissive devices that emit at not more than two colors, and/or a limited number of color altering layers, are provided. Devices disclosed herein also may be achieved using simplified fabrication techniques compared to conventional side-by-side arrangements, because fewer masking steps may be required.
Abstract:
An elastomeric stamp is used to deposit material on a non-planar substrate. A vacuum mold is used to deform the elastomeric stamp and pressure is applied to transfer material from the stamp to the substrate. By decreasing the vacuum applied by the vacuum mold, the elasticity of the stamp may be used to apply this pressure. Pressure also may be applied by applying a force to the substrate and/or the stamp. The use of an elastomeric stamp allows for patterned layers to be deposited on a non-planar substrate with reduced chance of damage to the patterned layer.
Abstract:
A light emitting system is provided including a first organic light emitting device. The first organic light emitting device includes an anode, a cathode, a first organic emitting layer disposed between the anode and the cathode, and a second organic emitting layer disposed between the anode and the cathode. The first organic emitting layer and the second organic emitting layer each include an emissive dopant having a peak wavelength of between 400 to 500 nanometers, but one of the peak wavelength of one of the dopants is at least 4 nm less than the peak wavelength of the other dopant. The first organic emitting layer and the second organic emitting layer may overlap each other, such as being disposed one over the other. The device may be used in white light or multi-color systems.
Abstract:
An automated platelet function analyzer includes a sampling vessel, a preparation vessel, an analysis vessel, a sampling needle, a blood sample syringe, a platelet agonist syringe, an analysis solution syringe and a blood mixing device. A method for platelet analysis is also disclosed.