Abstract:
Raman-active nanoclusters comprised of a metal and a Raman-active organic molecule incorporated therein that are capable of self-assembly are described. The Raman-active nanoclusters are capable of acting as sensitive reporters for analyte detection. A metal that enhances the Raman signal from the organic Raman-active compound is inherent in the nanocluster. A variety of organic Raman-active compounds and mixtures of compounds can be incorporated into the nanocluster.
Abstract:
Modified and functionalized metallic nanoclusters capable of providing an enhanced Raman signal from an organic Raman-active molecule incorporated therein are provided. For example, modifications include coatings and layers, such as adsorption layers, metal coatings, silica coatings, and organic layers. The nanoclusters are generally referred to as COINs (composite organic inorganic nanoparticles) and are capable of acting as sensitive reporters for analyte detection. A metal that enhances the Raman signal from the organic Raman-active compound is inherent in the nanocluster. A variety of organic Raman-active compounds and mixtures of compounds can be incorporated into the nanocluster.
Abstract:
Methods and devices for solution-based detection of molecular and cellular analytes in a sample using composite organic-inorganic nanoclusters (COINs) are provided. The nanoclusters include metallic colloids and a Raman-active organic compound. A metal that enhances the Raman signal from the organic compound is inherent in the nanoparticle. Since a wide variety of Raman-active organic compounds can be incorporated into the particle, highly parallel analyte detection can be performed.
Abstract:
The present methods and apparatus concern the detection and/or identification of target analytes using probe molecules. In various embodiments of the invention, the probes or analytes are attached to one or more cantilevers. Binding of a probe to an analyte results in deflection of the cantilever, detected by a detection unit. A counterbalancing force may be applied to restore the cantilever to its original position. The counterbalancing force may be magnetic, electrical or radiative. The detection unit and the mechanism generating the counterbalancing force may be operably coupled to an information processing and control unit, such as a computer. The computer may regulate a feedback loop that maintains the cantilever in a fixed position by balancing the deflecting force and the counterbalancing force. The concentration of analytes in a sample may be determined from the magnitude of the counterbalancing force required to maintain the cantilever in a fixed position.
Abstract:
The presently claimed invention provides methods and kits for amplifying a target sequence from within a nucleic acid population. The presently claimed invention provides selection probes which are complementary to at least a portion of said target sequence and mechanisms for adding a probe sequence to the 3′ end of a target sequence that is hybridized to a selection probe. The added 3′ probe sequence and a probe sequence added at the 5′ end of the target by adaptor ligation allow for selective amplification of the target sequence.
Abstract:
Metallic nanoclusters capable of providing an enhanced Raman signal from an organic Raman-active molecule incorporated therein are provided. The nanoclusters are generally referred to as COINs (composite organic inorganic nanoparticles) and are capable of acting as sensitive reporters for analyte detection. Embodiments of the invention provide methods for detecting and quantitating enzyme activity. Further, the parallel assay capabilities of COINs allow libraries of compounds and molecules to be tested for enzyme activity.
Abstract:
The methods, apparatus and compositions disclosed herein concern the detection, identification and/or sequencing of biomolecules, such as nucleic acids or proteins. In certain embodiments of the invention, coded probes comprising a probe molecule attached to one or more nano-barcodes may be allowed to bind to one or more target molecules. After binding and separation from unbound coded probes, the bound coded probes may be aligned on a surface and analyzed by scanning probe microscopy. The nano-barcodes may be any molecule or complex that is distinguishable by SPM, such as carbon nanotubes, fullerenes, submicrometer metallic barcodes, nanoparticles or quantum dots. Where the probes are oligonucleotides, adjacent coded probes hybridized to a target nucleic acid may be ligated together before alignment and SPM analysis. Compositions comprising coded probes are also disclosed herein. Systems for biomolecule analysis may comprise an SPM instrument and at least one coded probe attached to a surface.
Abstract:
Methods for making nanocodes that can be detected using scanning probe microscopy are provided, as are nanocodes constructed of two or more polymers, including homogeneous polymers such as nucleic acid molecules and heterogeneous polymers such as peptide nucleic acid polymers, and subunits useful for constructing such nanocodes. Also provided are modified nanocodes such as a nanocode containing one or more linked metals such as gold or iron and/or a linked probe that can specifically bind a target molecule. In addition, systems are provided that include such nanocodes, for example, a system that includes the nanocode and a surface and/or a scanning probe microscope probe. Methods of using such nanocodes, for example, to detect and/or identify a target molecule in a sample (e.g., a biological or environmental sample) using scanning probe microscopy, also are provided.
Abstract:
Methods and apparatus are provided for assaying cell samples, which may be living cells, using probes labeled with composite organic-inorganic nanoparticles (COINs) and microspheres with COINs embedded within a polymer matrix to which the probe moiety is attached. COINs intrinsically produce SERS signals upon laser irradiation, making COIN-labeled probes particularly suitable in a variety of methods for assaying cells, including biological molecules that may be contained on or within cells, most of which are not inherently Raman-active. The invention provides variations of the sandwich immunoassay employing both specific and degenerate binding, methods for reverse phase assay of tissue samples and cell microstructures, in solution displacement and competition assays, and the like. Systems and chips useful for practicing the invention assays are also provided.
Abstract:
Methods and apparatus are provided herein for assaying biological samples using probes labeled with composite organic-inorganic nanoparticles (COINs) and microspheres with COINs embedded within a polymer matrix to which the probe moiety is attached. COINs are Raman-active nanoparticles made up of aggregated primary metal crystal particles with Raman-active organic compounds adsorbed on the surface in the junctions of aggregated primary metal crystal particles or embedded in the crystal lattice of the primary metal particles. Since COINs intrinsically produce SERS signals upon laser irradiation, COIN-labeled probes are particularly suitable in a variety of methods for assaying biological molecules, most of which are not inherently Raman-active. The invention provides variations of the sandwich immunoassay employing both specific and degenerate binding, methods for reverse phase assay of tissue samples and cell microstructures, in solution displacement and competition assays, and the like. Kits and chips useful for practicing the invention assays are also provided.