Abstract:
Embodiments of the present invention concern methods, compositions and uses thereof, relating to at least one of vitiligo, or vitiligo-associated autoimmune/autoinflammatory disease (VAAAD). In particular embodiments, genetic variations in the NALP1 gene are of use to detect, diagnose, predict the risk of or treat at least one of vitiligo or VAAAD. In more particular embodiments, the presence of genetic variations such as single-nucleotide polymorphisms (SNPs) in NALP1 genetic region are of use to detect, diagnose or predict the risk of VAAAD. In other embodiments, inhibitors targeted to NALP1, caspase-1 or caspase-5, ASC (PYCARD), interleukin-1β, interleukin-1β receptor, or interleukin 18 may be administered to a subject to treat VAAAD.
Abstract:
A blood smear preparation device includes a base; a carrying table for carrying a microscope slide thereon and being supported on the base; a lifting mechanism mounted to the base; a retaining stand suspended from an output end of the lifting mechanism; a spreader holder rotatably suspended from the retaining stand about a second rotating shaft and positioned above the carrying table; a positioning member for positioning the spreader; and a torsion elastic member provided about the second rotating shaft, with a free end of the torsion elastic member abutting against the spreader holder. With the provision of the second rotating shaft and the torsion elastic member, the spreader has a certain degree of flexibility and self-adaptiveness. Even if the spreader or the microscope slide has no good micro-flatness or straightness, the device may automatically adjust the positions of the spreader and the microscope slide to achieve a line contact and a surface contact, and thus ensure the quality of the blood smear.
Abstract:
A new method is provided for the creation of an oxide layer that contains three different thicknesses. A first layer of oxide is grown on the surface of a substrate; a first layer of photoresist is deposited and patterned thereby partially exposing the surface of the underlying first layer of oxide. A nitrogen implant is performed into the surface of the underlying substrate; the photoresist mask of the first layer of photoresist is removed. A second layer of photoresist is deposited and patterned, the first layer of oxide is removed from above and surrounding the implanted regions of the substrate. The second mask of resist is removed. The first layer of oxide is reduced in thickness, its thickness is restored to a first thickness by a blanket growth of a second layer of oxide over the exposed surface of the substrate (where no ion implant has been performed) to a third thickness, over the surface of the substrate where the ion implant has been performed to a second thickness and over the surface of the first layer of oxide thereby restoring this layer of oxide to its original first thickness.
Abstract:
The embodiments of the present invention disclose an apparatus for transmitting multi-ary error-correcting codes, an apparatus for receiving multi-ary error-correcting codes, a data transmission system, and relevant methods to simplify operations. The apparatus for transmitting multi-ary error-correcting codes includes: a multi-ary channel encoder, adapted to perform multi-ary coding for source data frames of a user to obtain encoded sequences; a symbol mapper, adapted to perform symbol mapping for the encoded sequences to obtain symbol sequences; and a spreading and interleaving unit, adapted to spread and interleave the symbol sequences. Moreover, a corresponding apparatus for receiving multi-ary error-correcting codes, a data transmission system, and relevant methods are provided.
Abstract:
An elevator car includes supporting sections, which are arranged on a car frame. Each supporting section has a foot, a first arm and a second arm. The foot is fastened to the car frame, at their free ends the arms converge and form a slit-shaped constriction, into which panel sections of panels that form walls or a ceiling can be clipped. The arms possess spring properties and, at the constriction, can be moved apart against a spring force. The arms hold the panel sections in position in the area of the constriction.
Abstract:
An exemplary cable holding device includes a supporting member and sliding bars. The supporting member includes a first sidewall, a second sidewall spaced from the first sidewall, and a bottom connecting the first sidewall to the second sidewall. Each of the first sidewall and the second sidewall defines through holes. Each bar slidably extends through a corresponding one of the through holes. The cables pass over ends of the sliding bars between the first sidewall and the second sidewall.
Abstract:
Human antibodies and antigen-binding portions of those antibodies that specifically bind extended Type I chain glycosphingolipids are provided.
Abstract:
A system and method for system and method for multiplexing control and data channels in a multiple input, multiple output (MIMO) communications system are provided. A method for transmitting control symbols and data symbols on multiple MIMO layers includes selecting a first set of codewords from Ncw codewords, distributing control symbols onto the first set of layers, placing data symbols of the first set of codewords onto the first set of layers, placing data symbols of the (Ncw-Ncw1) remaining codewords to remaining layers if Ncw>Ncw1, and transmitting the multiple MIMO layers. The first set of codewords is associated with a first set of layers from the multiple MIMO layers, and the Ncw codewords are to be transmitted simultaneously and the first set of codewords comprises Ncw1 MIMO codewords, where Ncw and Ncw1 are integers greater than or equal to 1. The remaining layers are MIMO layers from the multiple MIMO layers not in the first set of layers.
Abstract:
A system and method for multiple input, multiple output (MIMO) uplink (UL) layer mapping is provided. A method for mapping modulation symbols to multiple input, multiple output (MIMO) layers includes receiving a first set of modulation symbols corresponding to a first transport block, partitioning the first set of modulation symbols into M1 parts, assigning each of the M1 parts to one of the M1 MIMO layers, and transmitting the modulation symbols mapped onto the M1 MIMO layers. The first transport block includes a plurality of code blocks, all modulation symbols of at least one code block belongs to a single part, and M1 is a positive integer value greater than one.
Abstract:
The embodiments of the present invention disclose an apparatus for transmitting multi-ary error-correcting codes, an apparatus for receiving multi-ary error-correcting codes, a data transmission system, and relevant methods to simplify operations. The apparatus for transmitting multi-ary error-correcting codes includes: a multi-ary channel encoder, adapted to perform multi-ary coding for source data frames of a user to obtain encoded sequences; a symbol mapper, adapted to perform symbol mapping for the encoded sequences to obtain symbol sequences; and a spreading and interleaving unit, adapted to spread and interleave the symbol sequences. Moreover, a corresponding apparatus for receiving multi-ary error-correcting codes, a data transmission system, and relevant methods are provided.