Abstract:
Disclosed is a phase-changeable memory device and a related method of reading data. The memory device is comprised of memory cells, a high voltage circuit, a precharging circuit, a bias circuit, and a sense amplifier. Each memory cell includes a phase-changeable material and a diode connected to a bitline. The high voltage circuit provides a high voltage from a power source. The precharging circuit raises the bitline up to the high voltage after charging the bitline up to the power source voltage. The bias circuit supplies a read current to the bitline by means of the high voltage. The sense amplifier compares a voltage of the bitline with a reference voltage by means of the high voltage, and reads data from the memory cell. The memory device is able to reduce the burden on the high voltage circuit during the precharging operation, thus assuring a sufficient sensing margin during the sensing operation.
Abstract:
In one aspect, a non-volatile semiconductor memory device includes a phase phase-change memory cell array including a plurality of word lines, a plurality of bit lines, and a plurality of phase-change memory cells, where each the phase-change memory cells includes a phase-change resistive element and a diode connected in series between a word line and a bit line among the plurality of word lines and bit lines of the phase-change memory cell array. The memory device of this aspect further includes a sense node which is selectively connected to a bit line of the phase-change memory cell array, a boosting circuit which generates a boosted voltage which is greater than an internal power supply voltage, a pre-charge and biasing circuit which is driven by the boosted voltage to pre-charge and bias the sense node, and a sense amplifier connected to the sense node. The boosted voltage may be equal to or greater than a sum of the internal power supply voltage and a threshold voltage of the diode of each phase-change memory cell.
Abstract:
A variable resistance memory device includes a substrate, a plurality of active lines formed on the substrate, are uniformly separated, and extend in a first direction, a plurality of switching devices formed on the active lines and are separated from one another, a plurality of variable resistance devices respectively formed on and connected to the switching devices, a plurality of local bit lines formed on the variable resistance devices, are uniformly separated, extend in a second direction, and are connected to the variable resistance devices, a plurality of local word lines formed on the local bit lines, are uniformly separated, and extend in the first direction, a plurality of global bit lines formed on the local word lines, are uniformly separated, and extend in the second direction, and a plurality of global word lines formed on the global bit lines, are uniformly separated, and extend in the first direction.
Abstract:
In various methods of performing program operations in phase change memory devices, selected memory cells are repeatedly programmed to obtain resistance distributions having desired characteristics such as adequate sensing margins.
Abstract:
A variable resistance memory device includes a substrate, a plurality of active lines formed on the substrate, are uniformly separated, and extend in a first direction, a plurality of switching devices formed on the active lines and are separated from one another, a plurality of variable resistance devices respectively formed on and connected to the switching devices, a plurality of local bit lines formed on the variable resistance devices, are uniformly separated, extend in a second direction, and are connected to the variable resistance devices, a plurality of local word lines formed on the local bit lines, are uniformly separated, and extend in the first direction, a plurality of global bit lines formed on the local word lines, are uniformly separated, and extend in the second direction, and a plurality of global word lines formed on the global bit lines, are uniformly separated, and extend in the first direction.
Abstract:
Provided is a method of testing a phase change random access memory (PRAM). The method may include providing a plurality of PRAM cells each coupled between each of a plurality of first lines and each of a plurality of second lines intersecting the first lines, selecting at least one of the plurality of first lines while deselecting the remaining first lines and the plurality of second lines, pre-charging the selected at least one of the plurality of first lines to a predetermined or given voltage level, and sensing a change in the voltage level of the selected first line while supplying a monitoring voltage to the selected first line.
Abstract:
A phase change memory device is disclosed. It includes a memory cell array including a plurality of memory cells programmed in relation to a phase change material, and a write driver circuit configured to provide a set current and a reset current to a selected memory cell. The write driver circuit includes a set current driver configured to provide the set current and a reset current driver configured to provide the reset current.
Abstract:
Disclosed is a phase-changeable memory device and method of programming the same. The phase-changeable memory device includes memory cells each having multiple states, and a program pulse generator providing current pulses to the memory cells. The program pulse generator initializes a memory cell to a reset or set state by applying a first pulse thereto and thereafter provides a second pulse to program the memory cell to one of the multiple states. According to the invention, as a memory cell is programmed after being initialized to a reset or set state, it is possible to correctly program the memory cell without influence from the previous state of the memory cell.