Abstract:
Embodiments described herein relate to providing reduced power consumption in wireless communication systems, such as 802.11 WLAN systems. Timing information regarding power save opportunities (PSOPs) may be provided in communication frames, which may inform mobile devices of expected frame exchange periods during which they may transition to a Doze state. Additional PSOP information may be included in beacon frames, which may inform mobile devices of expected multicast periods during which they may transition to a Doze state. This may operate to provide improvements in terms of power consumption.
Abstract:
Embodiments described herein relate to a system and method for providing flexible receiver configuration in wireless communication systems, such as 802.11 WLAN systems. In one embodiment, a wireless device may transmit a first data frame including first configuration information specifying a first configuration of the receiver to notify a remote device that the wireless device intends to configure its receiver according to the first configuration. After receiving an acknowledgement frame confirming the first configuration information, the wireless device may configure the receiver according to the first configuration. In another embodiment, a wireless device may receive a first data frame including first configuration information and further including a request that the wireless device configure its receiver according to the first configuration. In response, the wireless device may configure the receiver according to the first configuration. In either case, the wireless device may receive subsequent communications according to the first configuration.
Abstract:
Wireless communication devices (UEs) may include multiple receive (RX) chains and associated antennas, and at least one transmit (TX) chain co-located with one of the RX chains. The UE may track instant fading of the antenna gain(s) during reception of packets from an associated access point (AP) device to which the UE intends to transmit packets. The UE may also track long term antenna gain(s), using any packets received at the multiple RX chains within the UE. At a switching occasion, a decision is made by the UE whether to switch antennas. If the instant fading detection is based on packets received no later than a specified time period prior to the switching occasion, then the UE may make the switching decision based on the results of the instant fading tracking. Otherwise, the UE may make the switching decision based on the results of the long term antenna gain tracking.
Abstract:
In some embodiments, a first wireless device initializes a first threshold and sends a first frame transmission to a second wireless device. When the first wireless device determines that the first frame transmission was successful, it adjusts the first threshold to a second threshold that is greater than the first threshold. Additionally, when the first wireless device determines that the first frame transmission was not successful, the first wireless device adjusts the first threshold to a third threshold that is less than the first threshold. The thresholds can be associated with any measure, including carrier sensitivity and/or energy detection.
Abstract:
This disclosure relates to low energy communication techniques. According to some embodiments, a wireless transmission may be received by a wireless device. The wireless transmission may include a physical layer (PHY) preamble and PHY data. The PHY preamble may include destination information indicating a destination and length information indicating a length (or duration) of the wireless transmission. The destination and length information may be included prior to a portion of the PHY preamble configured for channel estimation. The wireless device may determine whether the wireless transmission is destined to the wireless device based on the destination information. If the wireless transmission is not destined to the wireless device, the wireless device may drop a remainder of the wireless transmission.
Abstract:
A backward compatible L-LTF design that can provide control information in addition to channel estimation information in conjunction with Wi-Fi communication techniques. A wireless transmission may be received by a wireless device. The wireless transmission may include a physical layer (PHY) preamble and PHY data. The PHY preamble may include a field that has a training sequence configured for channel estimation and control information. The control information may be determined by the wireless device, and the wireless device may configure reception parameters for the wireless transmission based on the control information.
Abstract:
A wireless access point transmits a protocol data unit (PDU) that includes data and signaling for a plurality of user devices. The PDU spans a channel in frequency and an interval in time, and includes a first signaling section, a second signaling section and a traffic action. For each of a plurality of subchannels of the channel: the first signaling section includes (within the subchannel) a corresponding redundant copy of common signaling information for the user devices associated with the access point; the second signaling section includes (within the subchannel) a corresponding set of user-specific signaling information for a corresponding group of one or more of the user devices; and the traffic section includes (within the subchannel) a corresponding set of traffic data for the corresponding group of one or more user devices. Subchannels sizes may be configurable. A signaling set CRC may be included per subchannel.
Abstract:
Embodiments include a method, computer program product, and system for grouping electronic devices into contention groups to reduce uplink Orthogonal Frequency-Division Multiple Access (OFDMA) random access (OFDMA-RA) collisions. An access point may explicitly assign an electronic device to a contention group, or the electronic device may implicitly determine an assignment to the contention group. To explicitly assign a device to a contention group, the access point may randomly assign or assign based on a criteria of the electronic device. Examples of criteria include an association identifier (AID), a traffic type/quality of service (QoS) category, a power saving preference, and an association status. The electronic device may implicitly determine a contention group assignment based on the total number of contention groups. The electronic device may use the explicitly or implicitly assigned contention group number to determine whether the electronic device may contend for a given trigger frame random access (TF-R) frame.
Abstract:
This disclosure relates to orthogonal frequency division multiple access (OFDMA) communication in wireless local area networks (WLANs). According to some embodiments, a downlink OFDMA frame may be transmitted. An uplink OFDMA frame including acknowledgements associated with the downlink OFDMA frame may be received. The uplink OFDMA frame may be processed, in some instances including determining which devices receiving the downlink OFDMA frame transmitted an acknowledgement associated with the downlink OFDMA frame in the uplink OFDMA frame.
Abstract:
Wireless communication devices with multiple receive (RX) chains may be operated to maintain high performance while saving power. This may be accomplished by evaluating signal strength during transmission of the RX packets, and/or evaluating a possible imbalance (gain difference) between the multiple RX chains within the wireless communication device. Signal strength (or good signal) detection may be enabled when non-MIMO (non-multiple-in-multiple-out) transmissions are taking place, while imbalance detection (antenna gain comparison) may be enabled when a specified number of single-stream packets have been received. Once the decision has been made to operate in a reduced number RX path mode, decision to reactivate one or more additional RX paths may be made based on MIMO detection, a detection of a drop in signal quality, and/or upon expiration of a power save timer.