Abstract:
A video conferencing system is described that includes a near-end and a far-end system. The near-end system records both audio and video of one or more users proximate to the near-end system. This recorded audio and video is transmitted to the far-end system through the data connection. The video stream and/or one or more settings of the recording camera are analyzed to determine the amount of a video frame occupied by the recorded user(s). The video conferencing system may directly analyze the video frames themselves and/or a zoom setting of the recording camera to determine a ratio or percentage of the video frame occupied by the recorded user(s). By analyzing video frames associated with an audio stream, the video conferencing system may drive a speaker array of the far-end system to more accurately reproduce sound content based on the position of the recorded user in a video frame.
Abstract:
An audio capture device generates two microphone beam patterns with different directivity indices. The audio capture device may determine the position of a user relative to the audio capture device based on sounds detected by the separate microphone beam patterns. Accordingly, the audio capture device allows the determination of the position of the user without the complexity and cost of using a dedicated listening device and/or a camera. In particular, the audio capture device does not need to be immediately proximate to the user (e.g., held near the ear of the user) and may be used to immediately provide other services to the user (e.g., audio/video playback, telephony functions, etc.). The position of the user may include the measured distance between the audio capture device and the user, the proximity of the user relative to another device/object, and/or the orientation of the user relative to the audio capture device.
Abstract:
A directivity pattern generator for producing sound patterns using a modal architecture is described. The directivity pattern generator may include a beam pattern mixing unit, which defines sound patterns to be emitted by an audio system in terms of a set of frequency invariant modes or modal patterns. The beam pattern mixing unit produces a set of modal gains representing the level or degree each of the predefined modal patterns is to be applied to a set of audio streams. Modal filters may be used to modal amplitudes that compensate for inefficiencies of the each modal pattern at low frequencies. The directivity pattern generator may include a modal decomposition unit for generating driving signals for each transducer in one or more loudspeaker arrays based on weighted values for the modal gains/amplitudes.
Abstract:
A loudspeaker system includes a driver in an enclosure that provides a back volume which is sealed with respect to acoustic pressure waves produced by a driver diaphragm. An external microphone is located outside the back volume. An internal microphone located inside the back volume. A computational unit is coupled to the external microphone and the internal microphone and configured to determine a transfer function for an equalization filter. The transfer function determination is responsive to the external microphone and the internal microphone. A digital signal processor is coupled to a signal source, the driver, and the computational unit. The digital signal processor is configured to implement the equalization filter as determined by the computational unit, create a filtered audio signal from the signal source, and provide the filtered audio signal to the driver.
Abstract:
A loudspeaker array has a cabinet in which is formed a continuously open circumferential horn for controlling sound produced by a number of transducers which are positioned in the cabinet, at a throat of the horn. The continuously open circumferential horn may 1) improve the power efficiency of the transducers without unwanted aliasing effects in audible frequency ranges and 2) provide vertical control for sound emitted by the transducers by flaring.
Abstract:
A system and method for driving a loudspeaker array across directivities and frequencies to maintain timbre constancy in a listening area is described. In one embodiment, a frequency independent room constant describing the listening area is determined using the directivity index of a first beam pattern, the direct-to-reverberant ratio DR at the listener's location in the listening area, and an estimated reverberation time T60 for the listening area at a designated frequency. On the basis of this room constant, an offset may be generated for a second beam pattern. The offset describes the decibel difference between first and second beam patterns to achieve constant timbre and may be used to adjust the second beam pattern at multiple frequencies. Maintaining constant timbre improves audio quality regardless of the characteristics of the listening area and the beam patterns used to represent sound program content. Other embodiments are also described.
Abstract:
The present disclosure generally relates techniques for audio-assisted enrollment of biometric features. In some embodiments, methods and devices for assisting users with enrollment of biometric features, using spatial audio cues, are described.
Abstract:
Loudspeakers are described that may reduce comb filtering effects perceived by a listener by either 1) moving transducers closer to a sound reflective surface (e.g., a baseplate, a tabletop or a floor) through vertical (height) or rotational adjustments of the transducers or 2) guiding sound produced by the transducers to be released into the listening area proximate to the reflective surface through the use of horns and openings that are at a prescribed distance from the reflective surface. The reduction of this distance between the reflective surface and the point at which sound emitted by the transducers is released into the listening area may lead to shorter reflected path that reduces comb filtering effects caused by reflected sounds that are delayed relative to the direct sound. Accordingly, the loudspeakers shown and described may be placed on reflective surfaces without severe audio coloration caused by reflected sounds.
Abstract:
Loudspeakers are described that may reduce comb filtering effects perceived by a listener by either 1) moving transducers closer to a sound reflective surface (e.g., a baseplate, a tabletop or a floor) through vertical (height) or rotational adjustments of the transducers or 2) guiding sound produced by the transducers to be released into the listening area proximate to the reflective surface through the use of horns and openings that are at a prescribed distance from the reflective surface. The reduction of this distance between the reflective surface and the point at which sound emitted by the transducers is released into the listening area may lead to shorter reflected path that reduces comb filtering effects caused by reflected sounds that are delayed relative to the direct sound. Accordingly, the loudspeakers shown and described may be placed on reflective surfaces without severe audio coloration caused by reflected sounds.
Abstract:
An audio system that adjusts one or more beam patterns emitted by one or more loudspeaker arrays based on the preferences of users/listeners is described. The audio system includes an audio receiver that contains a listener location estimator, a listener identifier, and a voice command processor. Inputs from the listener location estimator, the listener identifier, and the voice command processor are fed into an array processor. The array processor drives the one or more loudspeaker arrays to emit beam patterns into the listening area based on inputs from each of these devices. By examining the location, preferred usage settings, and voice commands from listeners, the generated beam patterns are customized to the explicit and implicit preferences of the listeners with minimal direct input. Other embodiments are also described.