Abstract:
A method includes aligning and positioning a carrier in a predetermined orientation and location within a first front opening pod (FOUP) of a cluster tool, transferring the carrier to a charging station of the cluster tool, transferring a substrate from a second front opening pod (FOUP) of the cluster tool to the charging station and chucking the substrate onto the carrier, transferring the carrier having the substrate thereon from the charging station to a factory interface of the cluster tool, aligning the carrier having the substrate thereon in the factory interface of the cluster tool such that during substrate processing within a processing platform of the cluster tool the carrier is properly oriented and positioned relative to components of the processing platform, where the processing platform comprises one or more processing chambers, transferring the aligned carrier having the substrate thereon from the factory interface to the processing platform of the cluster tool for substrate processing, and transferring the aligned carrier having the processed substrate thereon from the processing platform to the factory interface.
Abstract:
Light-absorbing masks and methods of dicing semiconductor wafers are described. In an example, a method of dicing a semiconductor wafer including a plurality of integrated circuits involves forming a mask above the semiconductor wafer. The mask includes a water-soluble matrix based on a solid component and water, and a light-absorber species throughout the water-soluble matrix. The mask and a portion of the semiconductor wafer are patterned with a laser scribing process to provide a patterned mask with gaps and corresponding trenches in the semiconductor wafer in regions between the integrated circuits. The semiconductor wafer is plasma etched through the gaps in the patterned mask to extend the trenches and to singulate the integrated circuits. The patterned mask protects the integrated circuits during the plasma etching.
Abstract:
Etch masks and methods of dicing semiconductor wafers are described. In an example, an etch mask for a wafer singulation process includes a water-soluble matrix based on a solid component and water. The etch mask also includes a plurality of particles dispersed throughout the water-soluble matrix. The plurality of particles has an average diameter approximately in the range of 5-100 nanometers. A ratio of weight % of the solid component to weight % of the plurality of particles is approximately in the range of 1:0.1-1:4.
Abstract:
Methods and apparatus for rapid thermal processing of a planar substrate including axially aligning the substrate with a substrate support or with an empirically determined position are described. The methods and apparatus include a sensor system that determines the relative orientations of the substrate and the substrate support.
Abstract:
Methods of and apparatuses for dicing semiconductor wafers, each wafer having a plurality of integrated circuits, are described. In an example, a shadow ring assembly for a plasma processing chamber includes a shadow ring having an annular body and an inner opening. The shadow ring assembly further includes a cooling channel disposed in the annular body for cooling fluid transport. The cooling channel is coupled to a pair of supply/return openings at a surface of the annular body.
Abstract:
Methods and apparatus for rapid thermal processing of a planar substrate including axially aligning the substrate with a substrate support or with an empirically determined position are described. The methods and apparatus include a sensor system that determines the relative orientations of the substrate and the substrate support.
Abstract:
Embodiments of the present invention provide apparatus and method for improving gas distribution during thermal processing. One embodiment of the present invention provides an apparatus for processing a substrate comprising a chamber body defining a processing volume, a substrate support disposed in the processing volume, wherein the substrate support is configured to support and rotate the substrate, a gas inlet assembly coupled to an inlet of the chamber body and configured to provide a first gas flow to the processing volume, and an exhaust assembly coupled to an outlet of the chamber body, wherein the gas inlet assembly and the exhaust assembly are disposed on opposite sides of the chamber body, and the exhaust assembly defines an exhaust volume configured to extend the processing volume.