Abstract:
Water soluble organic-inorganic hybrid masks and mask formulations, and methods of dicing semiconductor wafers are described. In an example, a mask for a wafer singulation process includes a water-soluble matrix based on a solid component and water. A p-block metal compound, an s-block metal compound, or a transition metal compound is dissolved throughout the water-soluble matrix.
Abstract:
Methods of dicing semiconductor wafers, each wafer having a plurality of integrated circuits, are described. In an example, a method of dicing a semiconductor wafer having a plurality of integrated circuits involves forming a mask above the semiconductor wafer, the mask composed of a layer covering and protecting the integrated circuits. The mask is then patterned with a uniform rotating laser beam laser scribing process to provide a patterned mask with gaps, exposing regions of the semiconductor wafer between the integrated circuits. The semiconductor wafer is then plasma etched through the gaps in the patterned mask to singulate the integrated circuits.
Abstract:
Improved wafer coating processes, apparatuses, and systems are described. In one embodiment, an improved spin-coating process and system is used to form a mask for dicing a semiconductor wafer with a laser plasma dicing process. In one embodiment, a spin-coating apparatus for forming a film over a semiconductor wafer includes a rotatable stage configured to support the semiconductor wafer. The rotatable stage has a downward sloping region positioned beyond a perimeter of the semiconductor wafer. The apparatus includes a nozzle positioned above the rotatable stage and configured to dispense a liquid over the semiconductor wafer. The apparatus also includes a motor configured to rotate the rotatable stage.
Abstract:
Embodiments of the invention include methods and apparatuses for outgassing a workpiece prior to a plasma processing operation. An embodiment of the invention may comprise transferring a workpiece having a mask to an outgassing station that has one or more heating elements. The workpiece may then be heated to an outgassing temperature that causes moisture from the mask layer to be outgassed. After outgassing the workpiece, the workpiece may be transferred to a plasma processing chamber. In an additional embodiment, one or more outgassing stations may be located within a process tool that has a factory interface, a load lock coupled to the factory interface, a transfer chamber coupled to the load lock, and a plasma processing chamber coupled to the transfer chamber. According to an embodiment, an outgassing station may be located within any of the components of the process tool.
Abstract:
Baking methods and tools for improved wafer coating are described. In one embodiment, a method of dicing a semiconductor wafer including integrated circuits involves coating a surface of the semiconductor wafer to form a mask covering the integrated circuits. The method involves baking the mask with radiation from one or more light sources. The method involves patterning the mask with a laser scribing process to provide a patterned mask with gaps, exposing regions of the substrate between the ICs. The method may also involves singulating the ICs, such as with a plasma etching operation.
Abstract:
Methods of dicing semiconductor wafers, each wafer having a plurality of integrated circuits, are described. In an example, a method of dicing a semiconductor wafer having a plurality of integrated circuits involves forming a mask above the semiconductor wafer, the mask composed of a layer covering and protecting the integrated circuits. The mask is then patterned with a split laser beam laser scribing process, such as a split shaped laser beam laser scribing process, to provide a patterned mask with gaps, exposing regions of the semiconductor wafer between the integrated circuits. The semiconductor wafer is then plasma etched through the gaps in the patterned mask to singulate the integrated circuits.
Abstract:
Methods of dicing semiconductor wafers are described. In an example, a method of dicing a semiconductor wafer having integrated circuits thereon involves forming a mask above the semiconductor wafer, the mask composed of a layer covering and protecting the integrated circuits. The mask is then patterned with a multiple pass laser scribing process to provide a patterned mask with gaps exposing regions of the semiconductor wafer between the integrated circuits, the multiple pass laser scribing process including a first pass along a first edge scribing path, a second pass along a center scribing path, a third pass along a second edge scribing path, a fourth pass along the second edge scribing path, a fifth pass along the center scribing path, and a sixth pass along the first edge scribing path. The semiconductor wafer is then plasma etched through the gaps in the patterned mask to singulate the integrated circuits.
Abstract:
Methods of using a screen-print mask for hybrid wafer dicing using laser scribing and plasma etch described. In an example, a method of dicing a semiconductor wafer having a plurality of integrated circuits separated by streets involves screen-printing a patterned mask above the semiconductor wafer, the patterned mask covering the integrated circuits and exposing the streets of the semiconductor wafer. The method also involves laser ablating the streets with a laser scribing process to expose regions of the semiconductor wafer between the integrated circuits. The method also involves plasma etching the semiconductor wafer through the exposed regions of the semiconductor wafer to singulate the integrated circuits. The patterned mask protects the integrated circuits during the plasma etching.
Abstract:
An embodiment disclosed herein includes a method of dicing a wafer comprising a plurality of integrated circuits. In an embodiment, the method comprises forming a mask above the semiconductor wafer, and patterning the mask and the semiconductor wafer with a first laser process. The method may further comprise patterning the mask and the semiconductor wafer with a second laser process, where the second laser process is different than the first laser process. In an embodiment, the method may further comprise etching the semiconductor wafer with a plasma etching process to singulate the integrated circuits.
Abstract:
Water soluble organic-inorganic hybrid masks and mask formulations, and methods of dicing semiconductor wafers are described. In an example, a mask for a wafer singulation process includes a water-soluble matrix based on a solid component and water. A p-block metal compound, an s-block metal compound, or a transition metal compound is dissolved throughout the water-soluble matrix.