Abstract:
An alignment measurement system measures an alignment target on an object. A measurement illuminates the target and is reflected. The reflected measurement beam is split and its parts are differently polarized. A detector receives the reflected measurement beam. A processing unit determines alignment on the basis of the measurement beam received by the detector. An alternative arrangement utilizes an optical dispersive fiber to guide a multi-wavelength measurement beam reflected from the object to a detector.
Abstract:
In order to improve the throughput performance and/or economy of a measurement apparatus, the present disclosure provides a metrology apparatus including: a first measuring apparatus; a second measuring apparatus; a first substrate stage configured to hold a first substrate and/or a second substrate; a second substrate stage configured to hold the first substrate and/or the second substrate; a first substrate handler configured to handle the first substrate and/or the second substrate; and a second substrate handler configured to handle the first substrate and/or the second substrate, wherein the first substrate is loaded from a first, second or third FOUP, wherein the second substrate is loaded from the first, second or third FOUP, wherein the first measuring apparatus is an alignment measuring apparatus, and wherein the second measuring apparatus is a level sensor, a film thickness measuring apparatus or a spectral reflectance measuring apparatus.
Abstract:
An apparatus and system for determining alignment of a substrate in which a periodic alignment mark is illuminated with spatially coherent radiation which is then provided to a compact integrated optical device to create self images of the alignment mark which may be manipulated (e.g., mirrored, polarized) and combined to obtain information on the position of the mark and distortions within the mark. Also disclosed is a system for determining alignment of a substrate in which a periodic alignment mark is illuminated with spatially coherent radiation which is then provided to an optical fiber arrangement to obtain information such as the position of the mark and distortions within the mark.
Abstract:
The invention provides a method of measuring an alignment mark or an alignment mark assembly, wherein the alignment mark comprises grid features extending in at least two directions, the method comprising: measuring the alignment mark or alignment mark assembly using an expected location of the alignment mark or alignment mark assembly, determining a first position of the alignment mark or alignment mark assembly in a first direction, determining a second position of the alignment mark or alignment mark assembly in a second direction, wherein the second direction is perpendicular to the first direction, determining a second direction scan offset between the expected location of the alignment mark or alignment mark assembly in the second direction and the determined second position, and correcting the first position on the basis of the second direction scan offset using at least one correction data set to provide a first corrected position.
Abstract:
A measurement apparatus and method for determining a substrate grid describing a deformation of a substrate prior to exposure of the substrate in a lithographic apparatus configured to fabricate one or more features on the substrate. Position data for a plurality of first features and/or a plurality of second features on the substrate is obtained. Asymmetry data for at least a feature of the plurality of first features and/or the plurality of second features is obtained. The substrate grid based on the position data and the asymmetry data is determined. The substrate grid and asymmetry data are passed to the lithographic apparatus for controlling at least part of an exposure process to fabricate one or more features on the substrate.
Abstract:
A method for determining one or more optimized values of an operational parameter of a sensor system configured to measure a property of a substrate is disclosed. The method includes: determining a quality parameter for a plurality of substrates; determining measurement parameter values for the plurality of substrates using the sensor system for a plurality of values of the operational parameter; comparing a substrate to substrate variation of the quality parameter and a substrate to substrate variation of a mapping of the measurement parameter values; and determining the one or more optimized values of the operational parameter based on the comparing.
Abstract:
A lithographic apparatus has a substrate table on which a substrate is positioned, and an alignment sensor used to measure the alignment of the substrate. In an exemplary processing method, the alignment sensor is used to perform one or more edge measurements in a first step. In a second step, one or more edge measurements are performed on the notch of the substrate. The edge measurements are then used to align the substrate in the lithographic apparatus. In a particular example, the substrate is arranged relative to the alignment sensor such that a portion of the edge surface is positioned at the focal length of the lens. When the alignment sensor detects radiation scattered by the edge surface at the focal length of the lens, the presence of the edge of the substrate is detected.
Abstract:
A lithographic apparatus is described, the apparatus comprising: an illumination system configured to condition a radiation beam; a support constructed to support a patterning device, the patterning device being capable of imparting the radiation beam with a pattern in its cross-section to form a patterned radiation beam; a substrate table constructed to hold a substrate; and a projection system configured to project the patterned radiation beam onto a target portion of the substrate, wherein the apparatus further comprises an alignment system configured to perform, for one or more alignment marks that are present on the substrate: —a plurality of alignment mark position measurements for the alignment mark by applying a respective plurality of different alignment measurement parameters, thereby obtaining a plurality of measured alignment mark positions for the alignment mark; the apparatus further comprising a processing unit, the processing unit being configured to: —determine, for each of the plurality of alignment mark position measurements, a positional deviation as a difference between an expected alignment mark position and a measured alignment mark position, the measured alignment mark position being determined based on the respective alignment mark position measurement; —define a set of functions as possible causes for the positional deviations, the set of functions including a substrate deformation function representing a deformation of the substrate, and at least one mark deformation function representing a deformation of the one or more alignment marks; —generating a matrix equation PD=M*F whereby a vector PD comprising the positional deviations is set equal to a weighted combination, represented by a weight coefficient matrix M, of a vector F comprising the substrate deformation function and the at least one mark deformation function, whereby weight coefficients associated with the at least one mark deformation function vary depending on applied alignment measurement; —determining a value for the weight coefficients of the matrix M; —determining an inverse or pseudo-inverse matrix of the matrix M, thereby obtaining a value for the substrate deformation function as a weighted combination of the positional deviations. —applying the value of the substrate deformation function to perform an alignment of the target portion with the patterned radiation beam.
Abstract:
A substrate is provided with device structures and metrology structures (800). The device structures include materials exhibiting inelastic scattering of excitation radiation of one or more wavelengths. The device structures include structures small enough in one or more dimensions that the characteristics of the inelastic scattering are influenced significantly by quantum confinement. The metrology structures (800) include device-like structures (800b) similar in composition and dimensions to the device features, and calibration structures (800a). The calibration structures are similar to the device features in composition but different in at least one dimension. Using an inspection apparatus and method implementing Raman spectroscopy, the dimensions of the device-like structures can be measured by comparing spectral features of radiation scattered inelastically from the device-like structure and the calibration structure.
Abstract:
A patterning device, for use in forming a marker on a substrate by optical projection, the patterning device including a marker pattern having a density profile that is periodic with a fundamental spatial frequency corresponding to a desired periodicity of the marker to be formed. The density profile is modulated (such as sinusoidally) so as to suppress one or more harmonics of the fundamental frequency, relative to a simple binary profile having the fundamental frequency.