摘要:
The present invention relates to a method of inducing expression of a promoter function of various genes in a Coryneform bacterium related to function exertion, in order to exert the function of a Coryneform bacterium highly and effectively under an anaerobic condition, for producing an organic compound useful under an anaerobic condition, more particularly, provides a method of enhancing and/or suppressing the promoter function related to various genes, for the purpose of highly and effectively expressing various protein genes necessary for production of an objective substance, and suppressing expression of an unnecessary protein gene.The DNA fragment of the present invention is useful as a primer which is introduced into a transformed Coryneform bacterium producing a useful substance such as lactic acid and succinic acid highly and at a high efficiency.
摘要:
A transformant obtainable by introducing one or more of the following DNAs (a), (b), and (c) into a coryneform bacterium as a host.(a) A DNA which encodes acetohydroxy acid synthase derived from Corynebacterium glutamicum and which has a mutation changing the glycine at position 156 to glutamic acid (G156E) in an amino acid sequence encoded by the DNA, or an analog thereof.(b) A DNA which encodes acetohydroxy acid isomeroreductase derived from Corynebacterium glutamicum and which has mutations changing the serine at position 34 to glycine (S34G), the leucine at position 48 to glutamic acid (L48E), and the arginine at position 49 to phenylalanine (R49F) in an amino acid sequence encoded by the DNA, or an analog thereof. (c) A DNA which encodes leucine dehydrogenase derived from Lysinibacillus sphaericus, or an analog thereof.
摘要:
Provided is a phenol-producing transformant constructed by transferring a gene which encodes an enzyme having tyrosine phenol-lyase activity into a coryneform bacterium as a host. Also provided is a process for producing phenol, which comprises a step of allowing the transformant to react in a reaction mixture containing tyrosine, a salt thereof, or an ester thereof under reducing conditions, and a step of collecting phenol from the reaction mixture.
摘要:
Provided is a phenol-producing transformant constructed by transferring a gene which encodes an enzyme having chorismate-pyruvate lyase activity and a gene which encodes an enzyme having 4-hydroxybenzoate decarboxylase activity into a coryneform bacterium as a host. Also provided is a process for producing phenol, which comprises a step of allowing the transformant to react in a reaction mixture containing a saccharide under reducing conditions, and a step of collecting phenol from the reaction mixture.
摘要:
Provided is a phenol-producing transformant constructed by transferring a gene which encodes an enzyme having tyrosine phenol-lyase activity into a coryneform bacterium as a host. Also provided is a process for producing phenol, which comprises a step of allowing the transformant to react in a reaction mixture containing tyrosine, a salt thereof, or an ester thereof under reducing conditions, and a step of collecting phenol from the reaction mixture.
摘要:
A transformant capable of producing isopropanol which is constructed by transferring the following genes (a) to (d) into a coryneform bacterium: (a) an exogenous gene which encodes an enzyme having acetyl-CoA acetyltransferase activity; (b) an exogenous gene which encodes an enzyme having acetoacetyl CoA:acetate CoA-transferase activity; (c) an exogenous gene which encodes an enzyme having acetoacetate decarboxylase activity; and (d) an exogenous gene which encodes an enzyme having isopropanol dehydrogenase activity.
摘要:
A Corynebacterium glutamicum transformant having the capability of producing isobutanol and the following genes (1) to (5): (1) a gene which encodes an enzyme having acetohydroxy acid synthase activity; (2) a gene which encodes an enzyme having acetohydroxy acid isomeroreductase activity; (3) a gene which encodes an enzyme having dihydroxy acid dehydratase activity; (4) a gene which encodes an enzyme having 2-keto acid decarboxylase activity; and (5) a gene which encodes an enzyme having alcohol dehydrogenase activity, at least one of the genes being endogenous, and at least one of the genes being exogenous, efficiently produces isobutanol.
摘要:
The present invention provides an aerobic coryneform bacterium transformant in which a lactate dehydrogenase gene is disrupted, and a pyruvate carboxylase gene is recombined so as to be highly expressed by a genetic engineering method. The aerobic coryneform bacterium transformant of the present invention can produce dicarboxylic acids from saccharides at a high production rate.
摘要:
SOx removal equipment 15 which reduces sulfur oxides from flue gas 12 from a boiler 11, a cooler 16 which is provided on the downstream side of the SOx removal equipment 15 so as to reduce the sulfur oxides from the flue gas and decrease a gas temperature, CO2 recovery equipment 17 which includes an absorber for bringing CO2 in the flue gas into contact with a CO2 absorption liquid so as to be reduced and a regenerator for causing the CO2 absorption liquid to emit CO2 so as to recover CO2 and regenerate the CO2 absorption liquid, and ammonia injection equipment 22 for reducing a mist generation material which is a generation source of mist that is generated in the absorber of the CO2 recovery equipment before introducing the flue gas to the CO2 recovery equipment, are included.
摘要:
The catalyst exhibiting hydrogen spillover effect relates to the composition of a catalyst exhibiting hydrogen spillover effect and to a process for preparing the catalyst. The catalyst has a reduced transition base metal of Group VIB or Group VIIIB, such as cobalt, nickel, molybdenum or tungsten, supported on a high porous carrier, such as saponite, the base metal being ion-exchanged with at least one precious metal of Group VIIIB. The process includes the steps of loading the base metal onto the support, reducing the base metal, preferably with H2 at 600° C., and thereafter ion-exchanging the precious metal with the base metal. Preferred examples of the catalyst include a saponite support loaded with about 10-20 wt % cobalt and about 0.1-1 wt % precious metal. The catalyst is optimized for reactions that occur in commercial processes at about 360-400° C., such as in hydrocracking.