摘要:
Insertion of a probe comprising an array of 16 source coils through a forceps channel of an electronic endoscope prepares the source coils in the insert of electronic endoscope for use in monitoring work objects. To a bed where a patient lies, are mounted two sets of sensor coils crossing at a right angle to each other, each of which comprises at least four single core coils with a common central axis placed on the same line in the same direction. A control section of the system gives signals with radiofrequencies (driving signals) through source cables to the source coils, to excite the source coils to generate magnetic fields around them.
摘要:
An object of the present invention is to actively control at least one of the position and direction of the imaging field in a subject and to observe a desired observed region in the subject certainly in a short period of time. A body-insertable device system according to the present invention includes a capsule endoscope 1 introduced into a subject and a permanent magnet 3. An imaging unit of the capsule endoscope 1 for taking an image inside the subject is fixed in a casing. The capsule endoscope 1 includes a drive unit for changing at least one of the position and posture of the casing in the liquid 2a which is also introduced in the subject 100. The permanent magnet 3 controls the operation of the drive unit for changing at least one of the position and posture of the casing in the liquid 2a.
摘要:
An intra-subject observation system includes a first liquid inserted into a desired organ of a subject; and a second liquid inserted into the organ without being mixed with the first liquid due to a specific gravity lighter than that of the first liquid. The system also includes a capsule medical apparatus inserted into the organ with an intermediate specific gravity between the specific gravity of the first liquid and that of the second liquid to acquire intra-subject information, which is output out of the subject by radio.
摘要:
An endoscopic form detection device includes a posture detecting section configured to detect a posture of each of sensor units based on measurement data in the sensor unit, and a linear form detecting section configured to detect a detected linear form of an inserting section on an assumption that a form between the respective sensor units is a linear link whose dimension is equal to an inter-sensor dimension based on the detected posture of each of the sensor units. The endoscopic form detection device includes a form correcting section configured to compensate at least a position of each of the sensor units by using a particle filter, and configured to detect a corrected form obtained by correcting the detected linear form.
摘要:
An endoscopic form detection device includes a sensor tentative position detecting section configured to detect a tentative position of each sensor unit on the assumption that a portion between the respective sensor units is a linear tentative link whose dimension is equal to an inter-sensor dimension. The endoscopic form detection device includes a sensor position correcting section configured to correct a position of each sensor unit from the tentative position to a final position based on an absolute value of a difference between an arc length of each tentative arc and the inter-sensor dimension, and a final curve form detecting section configured to perform curve interpolation between the final positions of the respective sensor units by using a final arc to detect a final curve form of an inserting section.
摘要:
To reduce a display time of an image for which an observation is less required, and to effectively perform an observation of a series of images, the image display apparatus (1) includes an image processing controller (2a) that acquires an image from a storage unit (5), controls various image processes for the acquired image, and stores an image of a processing result in the storage unit (5), an image classification unit (2b) that calculates a correlation value between temporally continuous images and classifies each of the images into an image group based on the calculated correlation value, an image-of-interest detecting unit (2c) that detects a feature-image area including a predetermined feature from each of the images, and detects the feature image including the detected feature-image area as an image-of-interest, a representative-image extracting unit (2d) that extracts the image-of-interest and a first image in each of the image groups as a representative image and sets a display rate for each of the extracted representative images, and an image display controller (6a) that performs a control of sequentially displaying the series of representative images based on the set display rates.
摘要:
To reduce a display time of an image for which an observation is less required, and to effectively perform an observation of a series of images, the image display apparatus (1) includes an image processing controller (2a) that acquires an image from a storage unit (5), controls various image processes for the acquired image, and stores an image of a processing result in the storage unit (5), an image classification unit (2b) that calculates a correlation value between temporally continuous images and classifies each of the images into an image group based on the calculated correlation value, an image-of-interest detecting unit (2c) that detects a feature-image area including a predetermined feature from each of the images, and detects the feature image including the detected feature-image area as an image-of-interest, a representative-image extractor (2d) that extracts the image-of-interest and a first image in each of the image groups as a representative image and sets a display rate for each of the extracted representative images, and an image display controller (6a) that performs a control of sequentially displaying the series of representative images based on the set display rates.
摘要:
An image captured by successive imaging over time by using a capsule endoscope is correlated with the imaging position and compiled into a database. The left side of a display screen of a monitor device displays a subject internal model, a trajectory path of the capsule endoscope, and a position mark indicating the imaging position. An image corresponding to the position of the position mark is displayed in an image display area on the right side. When a position mark on the trajectory path is designated by a mouse, the corresponding image is displayed. It is also possible to designate a section for which the image corresponding to the position mark is displayed or to designate a position mark where an unusual image is captured.
摘要:
The present invention provides a method of making a catalyst with the following components: Component (A): A solid catalyst component comprising the following component (A-1) and component (A-2). Component (A-1): A solid component obtained by contacting the following component (A-1-1), component (A-1-2) and component (A-1-3). Component (A-1-1): an ion-exchangeable layered silicate Component (A-1-2): a magnesium compound Component (A-1-3): a titanium compound Component (A-2): A metallocene-type transition metal compound Component (B): An organic aluminum compound
摘要:
An ethylene polymer which is useful for molding inflation film having a particularly excellent moldability is provided. The ethylene polymer is obtainable by the first and second steps and satisfying the following conditions (a) to (d): (a) the polymer produced in the first polymerization step having an weight average molecular weight (Mw,.sub.1) in the range of 6.times.10.sup.5 to 4.times.10.sup.6 ; (b) the ratio (Mw,.sub.2 /Mw,.sub.1) of the weight average molecular weight of the polymer produced in the first polymerization step (Mw,.sub.1) and the weight average molecular weight of the polymer produced in the second polymerization step (Mw,.sub.2) being in the range of 0.7 to 1.4; (c) the molecular weight in which the integration fraction from the low molecular weight is equal to 1/2 of the weight fraction (W.sub.2) of the polymer produced in the second polymerization step being in the range of 5.times.10.sup.3 to 3.times.10.sup.4 ; and (d) the weight fraction (W.sub.1) of the polymer produced in the first step being in the range of 0.45 to 0.70, and the weight fraction (W.sub.2) of the polymer produced in the second step being in the range of 0.30 to 0.55.