Abstract:
An apparatus for detecting at least one species using Raman light detection includes at least one laser source for illuminating a sample containing the at least one species. The apparatus also includes a modulating element for modulating a spatial relationship between the sample and the light beams to cause relative positions of the sample and the light beams to be oscillated, in which Raman light at differing intensity levels are configured to be emitted from the at least one species based upon the different wavelengths of the light beams illuminating the sample. The apparatus also includes a Raman light detector and a post-signal processing unit configured to detect the at least one species.
Abstract:
An apparatus for detecting at least one molecule using Raman light detection includes a substrate for supporting a sample containing the at least one molecule, a laser source for emitting a laser beam to cause Raman light emission from the at least one molecule, a modulating element for modulating a spatial relationship between the laser beam and the substrate at an identified frequency to cause the Raman light to be emitted from the at least one molecule at the identified frequency, at least one detector for detecting the Raman light emitted from the at least one molecule, and a post-signal processing unit configured to process the detected Raman light emission at the identified frequency to detect the at least one molecule.
Abstract:
Embodiments of the present invention are related to nanowire-based devices that can be configured and operated as modulators, chemical sensors, and light-detection devices. In one aspect, a nanowire-based device includes a reflective member, a resonant cavity surrounded by at least a portion of the reflective member, and at least one nanowire disposed within the resonant cavity. The nanowire includes at least one active segment selectively disposed along the length of the nanowire to substantially coincide with at least one antinode of light resonating within the cavity. The active segment can be configured to interact with the light resonating within the cavity.
Abstract:
Embodiments of the present invention are related to nanowire-based devices that can be configured and operated as modulators, chemical sensors, and light-detection devices. In one aspect, a nanowire-based device includes a reflective member, a resonant cavity surrounded by at least a portion of the reflective member, and at least one nanowire disposed within the resonant cavity. The nanowire includes at least one active segment selectively disposed along the length of the nanowire to substantially coincide with at least one antinode of light resonating within the cavity. The active segment can be configured to interact with the light resonating within the cavity.
Abstract:
A scattering spectroscopy nanosensor includes a nanoscale-patterned sensing substrate to produce an optical scattering response signal indicative of a presence of an analyte when interrogated by an optical stimulus. The scattering spectroscopy nanosensor further includes a protective covering to cover and protect the nanoscale-patterned sensing substrate. The protective covering is to be selectably removed by exposure to an optical beam incident on the protective covering. The protective covering is to prevent the analyte from interacting with the nanoscale-patterned sensing substrate prior to being removed.
Abstract:
Examples of integrated sensors are disclosed herein. An example of an integrated sensor includes a substrate and a sensing member formed on a surface of the substrate. The sensing member includes collapsible signal amplifying structures and an area surrounding the collapsible signal amplifying structures that enables self-positioning of droplets exposed thereto toward the collapsible signal amplifying structures.
Abstract:
An ionic device includes a layer (220) of an ionic conductor containing first and second species (222, 224) of impurities. The first species (222) of impurity in the layer (220) is mobile in the ionic conductor, and a concentration profile of the first species (222) determines a functional characteristic of the device (200). The second species (224) of impurity in the layer (220) interacts with the first species (222) within the layer (220) to create a structure (226) that limits mobility of the first species (222) in the layer (220).
Abstract:
A multi-tiered network for gathering detected condition information includes a first tier having first tier nodes and a second tier having a second tier node. The second tier node is operable to receive detected condition information from at least one of the first tier nodes in a substantially autonomous manner. In addition, the second tier node is operable to at least one of store, process, and transmit the detected condition information. The network also includes a third tier having a third tier node configured to receive the detected condition information and to at least one of store and process the detected condition information.
Abstract:
Examples of integrated sensors are disclosed herein. An example of an integrated sensor includes a substrate and a sensing member formed on a surface of the substrate. The sensing member includes collapsible signal amplifying structures and an area surrounding the collapsible signal amplifying structures that enables self-positioning of droplets exposed thereto toward the collapsible signal amplifying structures.
Abstract:
According to an example, an apparatus for performing spectroscopy includes a parabolic reflector and a plurality of surface-enhanced Raman spectroscopy (SERS) elements spaced from the parabolic reflector and positioned substantially at a focal point of the parabolic reflector. The parabolic reflector is to reflect Raman scattered light emitted from molecules in a near field generated by the plurality of SERS elements to substantially increase the flux of the Raman scattered light emitted out of the apparatus.