摘要:
A current perpendicular to plane magnetoresistive sensor having improved resistance amplitude change and reduced spin torque noise. The sensor has an antiparallel coupled pinned layer structure with at least one of the layers of the pinned layer structure includes a high spin polarization material such as Co2FeGe. The sensor can also include an antiparallel coupled free layer.
摘要:
A magnetoresistive sensor having a hard bias layer with an engineered magnetic anisotropy in a direction substantially parallel with the medium facing surface. The hard bias layer may be constructed of CoPt, CoPtCr or some other magnetic material and is deposited over an underlayer that has been ion beam etched. The ion beam etch has been performed at an angle with respect to normal in order to induce anisotropic roughness on its surface for example in form of oriented ripples or facets. The anisotropic roughness induces a uniaxial magnetic anisotropy substantially parallel to the medium facing surface in the hard magnetic bias layers deposited there over.
摘要:
Magnetoresistive (MR) read elements and associated methods of fabrication are disclosed. A free layer and/or a pinned layer of an MR read element are formed from a magnetic material such as Co2−x−yMn1+xAl1+y, Co2−x−yMn1+xSi1+y, Co2−x−yMn1+xGe1+y, and Co2−x−yFe1+xSi1+y, where x and y are selected to create an off-stoichiometric alloy having a crystalline structure that is chemically disordered. The chemically disordered magnetic material has a lower spin-polarization than a Heusler alloy, but still exhibits acceptable GMR amplitudes and low spin-torque noise.
摘要翻译:公开了磁阻(MR)读取元件和相关的制造方法。 MR读取元件的自由层和/或钉扎层由诸如Co 2-xy Mn 1 + x Al 1 + 1的磁性材料形成, Co 2-xy Mn 1 + x 1 Si 1 + y 2,Co 2-xy SUB> > Mn 1 + x 1 Ge + 1 + y>和Co 2-xy Fe 1 + x Si > 1 + y
摘要:
A magnetic write head for magnetic data recording. The magnetic write head has a write pole with a magnetic anisotropy induced by an angled, directional ion milling of a seed layer. The magnetic anisotropy is such that a magnetic easy axis of magnetization is oriented substantially parallel with the air bearing surface (ABS) of the write head. This orientation of the easy axis of magnetization increases the write speed and data rate of the write head by increasing the speed with which the magnetization of the write pole can switch from one direction to another writing.
摘要:
A magnetoresistive sensor having a hard bias layer with an engineered magnetic anisotropy in a direction substantially parallel with the medium facing surface. The hard bias layer may be constructed of CoPt, CoPtCr or some other magnetic material and is deposited over an underlayer that has been ion beam etched. The ion beam etch has been performed at an angle with respect to normal in order to induce anisotropic roughness on its surface for example in form of oriented ripples or facets. The anisotropic roughness induces a uniaxial magnetic anisotropy substantially parallel to the medium facing surface in the hard magnetic bias layers deposited there over.
摘要:
A magnetoresistive sensor having a hard magnetic pinning layer with an engineered magnetic anisotropy in a direction substantially perpendicular to the medium facing surface. The hard magnetic pinning layer may be constructed of CoPt, CoPtCr, or some other magnetic material and is deposited over an underlayer that has been ion beam etched. The ion beam etch has been performed at an angle with respect to normal in order to induce anisotropic roughness for example in form of oriented ripples or facets oriented along a direction parallel to the medium facing surface. The anisotropic roughness induces a strong uniaxial magnetic anisotropy substantially perpendicular to the medium facing surface in the hard magnetic pinning layer deposited there over.
摘要:
A current-perpendicular-to-the-plane spin-valve (CPP-SV) magnetoresistive sensor has an improved antiparallel (AP) pinned structure. The AP-pinned structure has two ferromagnetic layers separated by a nonmagnetic antiparallel coupling (APC) layer and with their magnetization directions oriented antiparallel. One of the ferromagnetic layers in the AP-pinned structure is the reference layer in contact with the CPP-SV sensor's nonmagnetic electrically conducting spacer layer. In the improved AP-pinned structure each of the ferromagnetic layers has a thickness greater than 30 Å, preferably greater than approximately 50 Å, and the APC layer is either Ru or Ir with a thickness less than 7 Å, preferably about 5 Å or less. The ultrathin APC layer, especially if formed of iridium (Ir), provides significant coupling strength to allow the thick ferromagnetic layers to retain their magnetization directions in a stable antiparallel orientation.
摘要:
A magnetic head that uses a thick AP coupling layer in an AP-tab structure. The head includes a free layer having an active area and tab regions on opposite sides of the active area. An antiparallel (AP) coupling layer is formed above the free layer. In one embodiment, the AP coupling layer has a thickness of 15 Å or more. In another embodiment, the AP coupling layer is formed of Ir, and preferably has a thickness of 15 Å or more. A bias layer is formed above each of the tab portions of the free layer, magnetic moments of the tab regions of the free layer being pinned antiparallel to the magnetic moments of the bias layers.
摘要:
An extraordinary magnetoresistance (EMR) sensor uses a ferromagnetic multilayer to provide perpendicular magnetic biasing for the sensor. The ferromagnetic multilayer has intrinsic perpendicular magnetic anisotropy and is preferably on top of the EMR active film. The multilayer comprises alternating films of Co, Fe or CoFe and Pt, Pd or PtPd with the preferred multilayer being alternating Co/Pt or Co/Pd films. A diffusion barrier may be located between the EMR active film and the ferromagnetic multilayer.
摘要:
A magnetoresistive sensor having a self biased free layer. The free layer is constructed upon an underlayer that has been treated by a surface texturing process that configures the underlayer with an anisotropic roughness that induces a magnetic anisotropy in the free layer. The treated layer underlying the free layer can be a spacer layer sandwiched between the free layer and pinned layer or can be a separate underlayer formed opposite the spacer layer. Alternatively, the texturing of an underlayer can be used to induce a magnetic anisotropy in a bias layer that is separated from the free layer by an orthogonal coupling layer. This self biasing of the free layer induced by texturing can also be used in conjunction with biasing from a hard-bias structure.