Abstract:
A magnetoresistance element has a pinning arrangement with two antiferromagnetic pinning layers, two pinned layers, and a free layer. A spacer layer between one of the two antiferromagnetic pinning layers and the free layer has a material selected to allow a controllable partial pinning by the one of the two antiferromagnetic pinning layers.
Abstract:
A magnetoresistance element has a seed layer that promotes an increased magnetic anisotropy of layers of the magnetoresistance element above the seed layer structure.
Abstract:
A method for manufacturing magnetic field detection devices comprises the operations of manufacturing a magneto-resistive element comprising regions with metallic conduction and regions with semi-conductive conduction. The method comprises the following operations: forming metallic nano-particles to obtain regions with metallic conduction; providing a semiconductor substrate; and applying metallic nano-particles to the porous semiconductor substrate to obtain a disordered mesoscopic structure. A magnetic device comprises a spin valve, which comprises a plurality of layers arranged in a stack which in turn comprises at least one free magnetic layer able to be associated to a temporary magnetisation (MT), a spacer layer and a permanent magnetic layer associated to a permanent magnetisation (MP). The spacer element is obtained by means of a mesoscopic structure of nanoparticles in a metallic matrix produced in accordance with the inventive method for manufacturing magneto-resistive elements.
Abstract:
A magnetic cell structure including a nonmagnetic filament contact, and methods of fabricating the structure are provided. The magnetic cell structure includes a free layer, a pinned layer, an insulative layer between the free and pinned layers, and a nonmagnetic filament contact in the insulative layer which electrically connects the free and pinned layers. The nonmagnetic filament contact is formed from a nonmagnetic source layer, also between the free and pinned layers. The filament contact directs a programming current through the magnetic cell structure such that the cross sectional area of the programming current in the free layer is less than the cross section of the structure. The decrease in the cross sectional area of the programming current in the free layer enables a lower programming current to reach a critical switching current density in the free layer and switch the magnetization of the free layer, programming the magnetic cell.
Abstract:
A magnetoresistive element has two magnetic layers and a nonmagnetic middle layer having organic molecules disposed between the two magnetic layers. The middle layer is thinner than 5 nm (50 Å). The magnetoresistive element exhibits a magnetoresistive effect as a function of the relative alignment of magnetizations of the first and the second magnetic layers and can be used in a magnetoresistive sensor in the based on GMR or TMR.
Abstract:
A magnetoresistive sensor having a hard bias layer with an engineered magnetic anisotropy in a direction substantially parallel with the medium facing surface. The hard bias layer may be constructed of CoPt, CoPtCr or some other magnetic material and is deposited over an underlayer that has been ion beam etched. The ion beam etch has been performed at an angle with respect to normal in order to induce anisotropic roughness on its surface for example in form of oriented ripples or facets. The anisotropic roughness induces a uniaxial magnetic anisotropy substantially parallel to the medium facing surface in the hard magnetic bias layers deposited there over.
Abstract:
In a magnetoresistive element, deposition of a conductor layer in a DC magnetron sputtering apparatus causes application of tensile stress to the conductor layer, causing the problem of readily producing separation of the conductor layer. In the present invention, a conductor layer is formed so that the crystal face spacing in the direction perpendicular to the film plane is larger than the crystal face spacing of a bulk material. This permits application of compression stress to the conductor layer, preventing separation of the conductor layer.
Abstract:
A magnetoresistance element can have a substrate; a ferromagnetic seed layer consisting of a binary alloy of NiFe; and a first nonmagnetic spacer layer disposed under and directly adjacent to the ferromagnetic seed layer and proximate to the substrate, wherein the first nonmagnetic spacer layer is comprised of Ta or Ru. A method fabricating of fabricating a magnetoresistance element can include depositing a seed layer structure over a semiconductor substrate, wherein the depositing the seed layer structure includes depositing at least a ferromagnetic seed layer over the substrate. The method further can further include depositing a free layer structure over the seed layer structure, wherein the depositing the ferromagnetic seed layer comprises depositing the ferromagnetic seed layer in the presence of a motion along a predetermined direction and in the presence of a predetermined magnetic field having the same predetermined direction.
Abstract:
A magnetic cell structure including a nonmagnetic filament contact, and methods of fabricating the structure are provided. The magnetic cell structure includes a free layer, a pinned layer, an insulative layer between the free and pinned layers, and a nonmagnetic filament contact in the insulative layer which electrically connects the free and pinned layers. The nonmagnetic filament contact is formed from a nonmagnetic source layer, also between the free and pinned layers. The filament contact directs a programming current through the magnetic cell structure such that the cross sectional area of the programming current in the free layer is less than the cross section of the structure. The decrease in the cross sectional area of the programming current in the free layer enables a lower programming current to reach a critical switching current density in the free layer and switch the magnetization of the free layer, programming the magnetic cell.
Abstract:
A magnetoresistance element has a double pinned arrangement with two antiferromagnetic pinning layers, two pinned layers, and a free layer. A spacer layer between one of the two antiferromagnetic pinning layers and the free layer has a material selected to allow a controllable partial pinning by the one of the two antiferromagnetic pinning layers.