Abstract:
Embodiments described herein relate to sub-pixel circuits and methods of forming sub-pixel circuits that may be utilized in a display such as an organic light-emitting diode (OLED) display. The device includes a plurality of sub-pixels, each sub-pixel of the plurality of sub-pixels defined by adjacent pixel-defining layer (PDL) structures with inorganic overhang structures disposed on the PDL structures, each sub-pixel having an anode, organic light-emitting diode (OLED) material disposed on the anode, and a cathode disposed on the OLED material. The device is made by a process including the steps of: depositing the OLED material and the cathode by evaporation deposition, and depositing an encapsulation layer disposed over the cathode.
Abstract:
Methods and apparatus for forming organic light emitting diode (OLED) structures disposed on a substrate are provided. In one embodiment, a method for forming an organic light emitting diode (OLED) substrate is provided that includes forming a first conductive layer on a substrate in a first direction, forming a dielectric layer on a portion of the first conductive layer, wherein the dielectric layer includes a well having a portion of the first conductive layer exposed, depositing an organic material into the well and on the dielectric layer continuously in the second direction and between the two bus bars, and forming a second conductive layer on the organic material continuously in a second direction orthogonal to the first direction and between two bus bars, wherein the second conductive layer is in direct contact with the bus bars on opposing sides thereof; and depositing an encapsulating layer on the second conductive layer continuously in the second direction and fully cover the second conductive layer.
Abstract:
An evaporation source for organic material is described. The evaporation source includes an evaporation crucible, wherein the evaporation crucible is configured to evaporate the organic material; a distribution pipe with one or more outlets, wherein the distribution pipe is in fluid communication with the evaporation crucible and wherein the distribution pipe is rotatable around an axis during evaporation; and a support for the distribution pipe, wherein the support is connectable to a first drive or includes the first drive, wherein the first drive is configured for a translational movement of the support and the distribution pipe.
Abstract:
Embodiments of the disclosure provide methods and apparatus for a shadow mask. In one embodiment, a shadow mask is provided and includes a frame made of a metallic material, and one or more mask patterns coupled to the frame, the one or more mask patterns comprising a metal having a coefficient of thermal expansion less than or equal to about 14 microns/meter/degrees Celsius and having a plurality of openings formed therein, the metal having a thickness of about 5 microns to about 50 microns and having borders formed therein each defining a fine opening having a recessed surface formed on a substrate contact surface thereof, wherein each of the one or more mask patterns have a flatness of less than about 150 microns across a surface area of about 70,000 square millimeters.
Abstract:
An evaporation source for organic material is described. The evaporation source includes an evaporation crucible, wherein the evaporation crucible is configured to evaporate the organic material; a distribution pipe with one or more outlets, wherein the distribution pipe is in fluid communication with the evaporation crucible and wherein the distribution pipe is rotatable around an axis during evaporation; and a support for the distribution pipe, wherein the support is connectable to a first drive or includes the first drive, wherein the first drive is configured for a translational movement of the support and the distribution pipe.
Abstract:
A processing apparatus for processing devices, particularly devices including organic materials therein, is described. The processing apparatus includes a processing vacuum chamber; at least one evaporation source for organic material, wherein the at least one evaporation source includes at least one evaporation crucible, wherein the at least one evaporation crucible is configured to evaporate the organic material, and at least one distribution pipe with one or more outlets, wherein the at least one distribution pipe is in fluid communication with the at least one evaporation crucible; and a maintenance vacuum chamber connected with the processing vacuum chamber, wherein the at least one evaporation source can be transferred from the processing vacuum chamber to the maintenance vacuum chamber and from the maintenance vacuum chamber to the processing vacuum chamber.
Abstract:
A sputter deposition source for sputter deposition in a vacuum chamber is described. The source includes a wall portion of the vacuum chamber; a target providing a material to be deposited during the sputter deposition; an RF power supply for providing RF power to the target; a power connector for connecting the target with the RF power supply; and a conductor rod extending through the wall portion from inside of the vacuum chamber to outside of the vacuum chamber, wherein the conductor rod is connected to one or more components inside of the vacuum chamber and wherein the conductor rod is connected to the RF power supply outside of the vacuum chamber to generate a defined RF return path through the conductor rod.
Abstract:
Sub-pixel circuits and methods of forming sub-pixel circuits that may be utilized in a display such as an organic light-emitting diode (OLED) display. In one example, a device includes a substrate, pixel-defining layer (PDL) structures disposed over the substrate and defining sub-pixels of the device, and a plurality of overhang structures. The first sub-pixel includes a first anode, OLED material, a first cathode, and a first encapsulation layer having a gap defined by a first portion of the first encapsulation layer disposed over the first cathode, a second portion of the first encapsulation layer disposed over a sidewall of the body structure, and a third portion of the first encapsulation layer under an underside surface of the top extension of the top structure, the first portion of the first encapsulation layer contacting the third portion of the first encapsulation layer.
Abstract:
Examples disclosed herein relate to device. The device includes a substrate, a plurality of adjacent pixel-defining layer (PDL structures disposed over the substrate, and a plurality of sub-pixels. The PDL structure have a top surface coupled to adjacent sidewalls of the PDL structure. The plurality of sub-pixels are defined by the PDL structures. Each sub-pixel includes an anode, an organic light emitting diode (OLED), a cathode, and an encapsulation layer. The organic light emitting diode (OLED) material disposed over the anode. The OLED material extends over the top surface of the PDL structure past the adjacent sidewalls. The cathode is disposed over the OLED material. The cathode extends over the top surface of the PDL structure past the adjacent sidewalls. The encapsulation layer is disposed over the cathode. The encapsulation layer has a first sidewall and a second sidewall.
Abstract:
Embodiments described herein relate to sub-pixel circuits, displays including sub-pixel circuits, and a method of forming sub-pixel circuits that may be utilized in a display such as an organic light-emitting diode (OLED) display. Some configurations of the displays described herein, include the sub-pixel circuits and at least one sensor opening adjacent to the overhang structure and an adjacent sub-pixel circuit. The at least one sensor opening includes a sensor disposed thereunder. Other configurations displays described herein, include sub-pixel circuits including OLED sub-pixels and a transparent sub-pixel such that a sensor is disposed thereunder. The configurations described herein utilize sensors that are integrated to increase the transmittance of the display while eliminating the need for bezels and reducing dead zones in the display.