Abstract:
Provided are a touch substrate and a method for driving the same, and a display apparatus. The touch substrate includes a base substrate, and a plurality of touch control units, gate lines and read lines disposed on the base substrate. Each touch control unit includes a first electrode plate, a piezoelectric material layer and a second electrode plate sequentially disposed on the base substrate. The gate lines are configured to provide a constant voltage to the first electrode plates during a touch control period. The read lines are configured to read out an amount of charges generated by the piezoelectric material layers so as to determine a position of a touch point.
Abstract:
An integrated circuit element and a fabrication method thereof, a circuit board, a display panel and a display device are provided, to reduce space occupied by the integrated circuit element and facilitate achieving intelligent transparent display by arranging the integrated circuit element in a display. The integrated circuit element includes a base plate, and a bare integrated circuit chip and multiple connection parts arranged on the base plate. The bare integrated circuit chip includes multiple connection points that are respectively electrically connected to the multiple connection parts.
Abstract:
The present invention provides a touch screen, a driving method thereof, and a display apparatus. The touch screen includes a liquid crystal cell formed by assembling an array substrate and a color filter substrate and a fixed electrode provided at a side of the array substrate distal to the color filter substrate, and further includes a common electrode provided on the array substrate and a shielding electrode provided at a side of the common electrode distal to the fixed electrode, the common electrode serves as a first drive electrode in force touch, a position of the fixed electrode corresponds to that of the common electrode, and the fixed electrode is configured to assist the first drive electrode to detect a touch force in force touch.
Abstract:
A touch screen comprises a fixed electrode disposed on a side of an array substrate away from a color filter substrate, the array substrate comprises a base substrate, a plurality of sensing lines and a plurality of common electrodes arranged in a matrix, orthographic projections of the sensing lines and the fixed electrode on the base substrate overlap with orthographic projections of the common electrodes on the base substrate, an extending direction of the sensing line is parallel to a column direction of arrangement of the common electrodes; a portion of the common electrodes function as first driving electrodes during a pressure sensing touch control, the sensing lines corresponding to the rest common electrodes function as sensing electrodes during the pressure sensing touch control; the fixed electrode assists the first driving electrodes and the sensing electrodes to detect a touch pressure during the pressure sensing touch control.
Abstract:
The present invention provides a surface structure identification unit including photoelectric sensing element, first and second signal input terminals, trace line, driving module, reset module and evaluation unit. The photoelectric sensing element is connected to the first signal input terminal, and the driving module. The reset module is configured to be connected to the driving module in a reset stage to reset the same. The control terminal of the driving module is configured to be connected to the second signal input terminal and the trace line in a charging stage and disconnected from the trace line in a detecting stage; the first terminal of the driving module is configured to be disconnected from the first signal input terminal in the charging stage and connected to the first signal input terminal in the detecting stage; and a second terminal of the driving module is connected to the trace line.
Abstract:
Disclosed is an intelligent shoe for the blind, which includes a sole and an upper. At least a portion of the sole is provided with multiple pressure sensors for generating pressure sensing signals when the sole is in contact with raised ground surface. The intelligent shoe further includes a storage chip, used to pre-store a signal characteristic of pressure sensing signals generated when the sole is in contact with a blind sidewalk, and a ata processing chip electrically connected to the multiple pressure sensors and the storage chip, used to compare a signal characteristic of pressure sensing signals from the pressure sensors with the pre-stored signal characteristic, and determine that the sole deviates from the blind sidewalk and send a prompt signal in the case that the signal characteristic of the pressure sensing signals from the pressure sensors is inconsistent with the pre-stored signal characteristic.
Abstract:
A touch control display panel and a manufacturing method thereof, a driving method, and a display device are disclosed. The touch control display panel includes a plurality of pixel units configured on the array substrate in an array; the array substrate further includes a plurality of self capacitance touch control electrodes, which are arranged in an array, and each of which includes a plurality of electrode blocks, which have a one-to-one correspondence relationship with the plurality of pixel units; the array substrate further includes a plurality of touch control lead wires, which have a one-to-one correspondence relationship with the plurality of self capacitance touch control electrodes, the touch control lead wires are provided in gaps between adjacent columns of pixel units, which are corresponding to the plurality of self capacitance electrodes for touch control, and the plurality of self capacitance electrodes for touch control are connected with a touch control chip through the corresponding touch control lead wires.
Abstract:
The present invention discloses a display device and a driving method thereof. The display device comprises a display panel, a grating, a voltage generating unit, a touch sensing unit and a control unit. The grating comprises a first electrode and a second electrode having a p plurality of electrode blocks. The voltage generating unit provides first and second voltages to the first and second electrodes, respectively. The control unit controls the values of the first, second voltages such that the grating is transparent during the 2D display phase and functions well during the 3D display phase. During a touch phase, the electrode blocks serve as touch electrodes so as to provide a touch function together with the touch sensing unit. Since the second electrode is used during both the display phase and the touch phase, the display device has a reduced thickness, lower costs and enhanced transmittance.
Abstract:
The present invention discloses a display substrate and a manufacturing method thereof and a display device. The display substrate comprises a base substrate and color matrix patterns and photo spacers provided on the base substrate, edges of the adjacent color matrix patterns are overlapped, and the photo spacers are provided above the overlapped parts of the adjacent color matrix patterns. By adopting such a structure, the thickness of the photo spacers can be reduced, the purpose of increasing the cell gap of the display device is achieved while providing thinner photo spacers, and the cell gap of the display device is increased.
Abstract:
A display panel includes base substrate, second conductive layer, second active layer, third gate insulating layer, third conductive layer in sequence. The second conductive layer includes first conductive part forming first gate of first transistor. The second active layer includes first active part including first and second sub-active parts and third sub-active part therebetween. The first and second sub-active parts form first and second electrodes of first transistor, and portion of the third sub-active part forms channel region of first transistor. Orthographic projection of the first conductive part on the base substrate covers that of the third sub-active part. Orthographic projection of the third gate insulating layer on the base substrate covers that of the first active part. The third conductive layer includes second conductive part forming second gate of first transistor. Orthographic projection of the second conductive part on the base substrate covers that of the channel region.