摘要:
One aspect of the invention relates to a metal fill process and systems therefor involving providing a standard calibration wafer having a plurality of fill features of known dimensions in a metalization tool; depositing a metal material over the standard calibration wafer; monitoring the deposition of metal material using a sensor system, the sensor system operable to measure one or more fill process parameters and to generate fill process data; controlling the deposition of metal material to minimize void formation using a control system wherein the control system receives fill process data from the sensor system and analyzes the fill process data to generate a feed-forward control data operative to control the metalization tool; and depositing metal material over a production wafer in the metalization tool using the fill process data generated by the sensor system and the control system. The invention further relates to tool characterization processes and systems therefor.
摘要:
A system for regulating the time and temperature of a development process is provided. The system includes one or more light sources, each light source directing light to one or more gratings being developed on a wafer. Light reflected from the gratings is collected by a measuring system, which processes the collected light. Light passing through the gratings may similarly be collected by the measuring system, which processes the collected light. The collected light is indicative of the progress of development of the respective portions of the wafer. The measuring system provides progress of development related data to a processor that determines the progress of development of the respective portions of the wafer. The system also includes a plurality of heating devices, each heating device corresponds to a respective portion of the developer and provides for the heating thereof. The processor selectively controls the heating devices so as to regulate temperature of the respective portions of the wafer.
摘要:
One aspect of the present invention relates to an in-line system for monitoring and optimizing an on-going CMP process in order to determine a CMP process endpoint comprising a wafer, wherein the wafer is subjected to the CMP process; a CMP process monitoring system for generating a signature related to wafer dimensions for the wafer subjected to the CMP process; and a signature library to which the generated signature is compared to determine a state of the wafer. Another aspect relates to an in-line method for monitoring and optimizing an on-going CMP process involving providing a wafer, wherein the wafer is subjected to a CMP process; generating a signature associated with the wafer; comparing the generated signature to a signature library to determine a state of the wafer; and using a closed-loop feedback control system for modifying the on-going CMP process according to the determined state of the wafer.
摘要:
The present invention is directed to a system and a method for controlling a thin film formation on a moving substrate as part of a process for manufacturing an integrated circuit. The invention involves the use of scatterometry to control the thin film formation process by analyzing the thin film on the moving substrate in a periodic manner. A registration feature associated with the moving substrate can be utilized in conjunction with a signaling system to determine a position of the moving substrate, whereby a repeatable analysis of a corresponding location on the moving substrate can be performed. Scatterometry permits in-situ measurements of thin film formation progress, whereby thin film formation process conditions can be controlled in a feedback loop to obtain a targeted result. Scatterometry can also be facilitated by providing a grating pattern on a non-production portion of the substrate.
摘要:
A system and method is provided for determining and controlling development of a semiconductor substrate employing fluorescence spectroscopy. One aspect of the invention relates to a system and method employing fluorescence spectroscopy to facilitate control of a chemical trim etch process during development of a photoresist material layer. The chemical trim etch process comprises applying a trim compound or material to a patterned photoresist. The trim compound or material is diffusable into the sides and top of the patterned resist. The diffused regions of the resist are soluble in a developer, which facilitates creating smaller features in the patterned photoresist. The fluorescence spectroscopy system can be employed to measure isolated and dense gratings or CDs and use the evolution of the CD to determine when to terminate the chemical trim process.
摘要:
One aspect of the present invention relates to a method for reducing carbon contamination on a mask involving placing a mask plate having carbon-containing contaminants thereon in a processing chamber; simultaneously contacting the mask plate with oxygen and exposing the mask plate with a flood exposure of electron beams wherein the carbon-containing contaminants are converted to a by-product; and removing the by-product from the processing chamber.
摘要:
A system and method for facilitating uniform heating temperature of a material is provided. The material may be a photoresist, a top or bottom anti-reflective coating, a low K dielectric material, SOG or other spin-on material. The system can include at least one heating element and a heat transfer fluid, the heating element heating the heat transfer fluid, which in turn heats the material. The transfer fluid more evenly distributes the heat from the heating element, which can have hot and cold spots at the material.
摘要:
In one embodiment, the present invention relates to a method of processing an irradiated photoresist involving the steps of placing a substrate having the irradiated photoresist thereon at a first temperature in a rapid thermal anneal furnace; heating the substrate having the irradiated photoresist thereon to a second temperature within about 0.1 seconds to about 10 seconds; cooling the substrate having the irradiated photoresist thereon to a third temperature in a rapid thermal annealing furnace within about 0.1 seconds to about 10 seconds; and developing the irradiated photoresist, wherein the second temperature is higher than the first temperature and the third temperature. In another embodiment, the present invention relates to a system of processing a photoresist, containing a source of actinic radiation and a mask for selectively irradiating a photoresist; a rapid thermal annealing furnace for rapidly heating and rapidly cooling a selectively irradiated photoresist, wherein the rapid heating and rapid cooling are independently conducted within about 0.1 seconds to about 10 seconds; and a developer for developing a rapid thermal annealing furnace heated and selectively irradiated photoresist into a patterned photoresist.
摘要:
A combination nozzle for applying a developer material and a washing solution material at different time intervals to a photoresist material layer disposed on a wafer is provided. The combination nozzle includes a number of developer nozzle tips connected to a developer supply line and a number of washing solution nozzle tips connected to a washing solution supply line. The developer supply line and the washing solution supply line ensure that the developer material and the washing solution material are always substantially isolated from one another. Furthermore, the developer nozzle tips and the washing solution nozzle tips are arranged so that developer material and washing solution material do not come into contact with one another. The volume of the material and the volume flow of the material can be controlled by electronically controlled valves.
摘要:
A method for creating a roughened surface on a material exposed to light during a photolithographic process is provided. The roughened surface is created on a surface of the material via a plasma etch process. The roughened surface diffuses light incident to the material such that the diffused light causes insubstantial damage to a photoresist subsequently formed on the material.