Abstract:
A bumper for a vehicle contains a bumper cross beam extending in a transversal direction of the vehicle, a bumper cover forming the external face of the bumper, and an energy-absorbing insert disposed at least in parallel between the mounted bumper cross beam and the bumper cover. The insert has a plurality of deformation cavities and/or deformation free spaces. The insert has a first boundary layer, a medial layer, and a second boundary layer. The medial layer has a different energy absorptive capacity than the two boundary layers and is associated with the bumper cross beam. The deformation cavities and/or deformation free spaces are embodied in the medial layer such that in case of a collision, the insert is plastically deformable at least partially in the transversal and/or longitudinal direction of the vehicle along a small part of a block length to absorb energy.
Abstract:
An encapsulation structure for an optoelectronic component, may include: a thin-film encapsulation for protecting the optoelectronic component against chemical impurities; an adhesive layer formed on the thin-film encapsulation; and a cover layer formed on the adhesive layer and serving for protecting the thin-film encapsulation and/or the optoelectronic component against mechanical damage, wherein the adhesive layer is formed such that particle impurities situated at the surface of the thin-film encapsulation are at least partly enclosed by the adhesive layer.
Abstract:
Systems and methods are provided for data processing. In one implementation, a data processing system includes storage means for storing sets of account identifiers, each of the sets of account identifiers being assigned a set of control parameters. The data processing system may also include an account management system that stores account data of accounts that are identified by the account identifiers, interface means coupled to the account management system, and one or more sets of application programs that are adapted to process account data of accounts identified by at least one of the one or more sets of account identifiers using the set of control parameters assigned to the at least one of the one or more sets of account identifiers. The interface means may obtain the account data from the account management system on request of one of the application programs.
Abstract:
An electronic component (100), which comprises a substrate (1), at least one first electrode (3) arranged on the substrate (3) and a growth layer (7) on the side of the electrode (3) remote from the substrate (7), wherein the electrode (7) arranged on the growth layer (3) comprises a metal layer (9) with a thickness of less than or equal to 30 nm and the growth layer (7) has a thickness which is less than or equal to 10 nm. An electrical contact is also disclosed.
Abstract:
Piston pin for a connecting rod in a reciprocating internal combustion engine, wherein the piston pin carries at least in the area of the running surface a thermal sprayed slide layer of a metallic bearing material or slide bearing material, as well as reciprocating internal combustion engine with a connecting rod with small and with large connecting rod eye, wherein at least the running surface of one of the piston pins is formed of a thermal sprayed slide layer of a metallic bearing material, which exhibits a lower hardness than the running surface of the corresponding connecting rod eye and process for manufacturing a described piston pin with the steps of a extrusion molding or machining a piston pin preform, introduction of a recess in the area which will later become the running surface, roughening the outer surface in the area of the recess, application of a coating of a bearing material by a thermal spray process.
Abstract:
An organic light-emitting diode (1), comprising a layer stack (2) for emitting electromagnetic radiation (6). An electrically conductive first connection layer (4) is arranged on a first surface of the layer stack (2) and an electrically conductive second connection layer (5) at least predominantly transparent to a characteristic wavelength of the emittable electromagnetic radiation (6) is arranged on a second surface of the layer stack (2). The organic light-emitting diode is characterised by a conductive contact structure (7) arranged on the opposite side of the first connection layer (4) from the layer stack, which contact structure is connected electrically to the second connection layer (5) in the region of a plurality of openings (12) in the first connection layer (4). Also disclosed is a contact arrangement (15) for a two-dimensional, optically active element and to a method of producing organic light-emitting diodes (1).
Abstract:
A radiation-emitting arrangement comprises, in particular, a carrier element (1) having an at least partly non-transparent main surface (10) and arranged on the carrier element (1), an organic radiation-emitting component (2) having an organic layer sequence (23) with an active region between an at least partly transparent first electrode (21) and an at least partly transparent second electrode (22). The active region (29) is suitable for generating electromagnetic radiation (91, 93) in a switched-on operating state. The radiation-emitting arrangement has a radiation exit area (3) for emitting the electromagnetic radiation (92, 93) on that side of the organic radiation-emitting component (2) which faces away from the carrier element. (1) The at least partly non-transparent main surface (10) of the carrier element (1) is perceptible by an external observer through the radiation exit area (3) in a switched-off operating state of the organic radiation-emitting component (2).
Abstract:
The present invention relates to monocotyledon plant cells and plants which are genetically modified, wherein the genetic modification consists of the introduction of an extraneous nucleic acid molecule which codes for a protein with the biological activity of an R1 protein. The present invention further relates to means and methods for the production thereof. Plant cells and plants of this type synthesise a modified starch, which is characterised in that it has an increased phosphate content and/or a modified phosphorylation pattern and/or an increased final viscosity in an RVA profile and/or a reduced peak temperature in DSC analysis and/or an increased gel strength in the texture analysis compared with starch from corresponding non-genetically modified monocotyledon plants. Therefore, the present invention also relates to the starch which is synthesised from the plant cells and plants according to the invention, and to methods of producing said starch. The present invention further relates to wheat flours which contain said modified starches, and to food products and bakery products which contain said wheat flours and/or starch.
Abstract:
The invention relates to a heat exchanger (1) comprising fixing elements which are provided with points of fracture, in particular in a vehicle. The aim of said invention is to provide said heat exchanger with restorable points of fracture and to make it possible to easily reassemble them after the separation thereof. For this purpose, the inventive heat exchanger (1) is characterised in that at least one fixing element is provided with a first and second area (6, 7; 12, 14) and with a quick release coupling therebetween; two areas (6, 12) form an inseparable component of the heat exchanger (1); the two areas (6, 7; 12, 14) are fixable to each other by a positive connection when the quick release coupling is closed; the coupling systems of one of the areas (6, 7; 12, 14) are provided with at least one point of fracture and in that the coupling systems provided with at least one point of fracture are arranged on the area (7, 14) which a detachable from said heat exchanger.
Abstract:
The invention relates to a connector (3) for connecting a flow pipe leading to an internal combustion engine of a motor vehicle to a feed pump. Said connector comprises an elbowed connecting sleeve (7) which can be rotationally fixed in various angular positions in a receiver (6). Said connecting sleeve (7) is positively fixed in the receiver (6) by a catch means (9). In this way, the forces acting on the flow pipe are kept at a distance from a seal pertaining to the connecting sleeve (7).