Abstract:
A method for forming a semiconductor device includes forming a photoresist layer over a substrate and patterning the photoresist layer to form photoresist portions. A second layer is formed over the substrate in areas not covered by the photoresist portions and the photoresist portions are removed. After removing the photoresist portions, the second layer is used to modify the substrate to create at least a portion of the semiconductor device.
Abstract:
A process of forming a fine pattern including forming a first photoresist layer over a first layer of a semiconductor device. Portions of the first photoresist layer are exposed causing a photochemical reaction therein. Prior to developing the first photoresist layer, a second photoresist layer is formed over the first photoresist layer, and wherein at least one of the first photoresist layer and second photoresist layer comprises a photo base generator.
Abstract:
A megasonic immersion lithography exposure apparatus and method for substantially eliminating microbubbles from an exposure liquid in immersion lithography is disclosed. The apparatus includes an optical system for projecting light through a mask and onto a wafer. An optical transfer chamber is provided adjacent to the optical system for containing an exposure liquid. At least one megasonic plate operably engages the optical transfer chamber for inducing sonic waves in and eliminating microbubbles from the exposure liquid.
Abstract:
A resist material and methods using the resist material are disclosed herein. An exemplary method includes forming a resist layer over a substrate, wherein the resist layer includes a polymer, a photoacid generator, an electron acceptor, and a photodegradable base; performing an exposure process that exposes portions of the resist layer with radiation, wherein the photodegradable base is depleted in the exposed portions of the resist layer during the exposure process; and performing an developing process on the resist layer.
Abstract:
A material for use in lithography processing includes a polymer that turns soluble to a base solution in response to reaction with acid and a plurality of magnetically amplified generators (MAGs) each having a magnetic element and each decomposing to form acid bonded with the magnetic element in response to radiation energy.
Abstract:
A material for use in lithography processing includes a polymer that turns soluble to a base solution in response to reaction with acid and a plurality of magnetically amplified generators (MAGs) each having a magnetic element and each decomposing to form acid bonded with the magnetic element in response to radiation energy.
Abstract:
A method and material layer for forming a pattern are disclosed. The method includes providing a substrate; forming a first material layer over the substrate; forming a second material layer over the first material layer, wherein the second material layer comprises a photoacid generator and a photobase generator; and exposing one or more portions of the second material layer
Abstract:
A method of lithography patterning includes forming a first material layer on a substrate, the first material layer being substantially free of silicon, and forming a patterned resist layer including at least one opening therein above the first material layer. A second material layer containing silicon is formed on the patterned resist layer and an opening is formed in the first material layer using the second material layer as a mask.