Abstract:
Presented herein are techniques to measure latency associated with packets that are processed within a network device. A packet is received at a component of a network device comprising one or more components. A timestamp representing a time of arrival of the packet at a first point in the network device is associated with the packet. The timestamp is generated with respect to a clock of the network device. A latency value for the packet is computed based on at least one of the timestamp and current time of arrival at a second point in the network device. One or more latency statistics are updated based on the latency value.
Abstract:
Techniques are presented herein to facilitate the monitoring of occupancy of a buffer in a network device. Packets are received at a network device. Information is captured describing occupancy of the buffer caused by packet flow through the buffer in the network device. Analytics packets are generated containing the information. The analytics packets from the network device for retrieval of the information contained therein for analysis, replay of buffer occupancy, etc.
Abstract:
A network device receives a packet that includes a plurality of header fields. The packet is parsed to sequentially obtain the plurality of header fields. One or more header fields not yet available at the network device are predicted based on one or more header fields that are available at the network device. A network processing decision is generated for the packet based on the predicted one or more header fields and the one or more header fields that are available at the network device.
Abstract:
Buffer designs and write/read configurations for a buffer in a network device are provided. According to one aspect, a first portion of the packet is written into a first cell of a plurality of cells of a buffer in the network device. Each of the cells has a size that is less than a minimum size of packets received by the network device. The first portion of the packet can be read from the first cell while concurrently writing a second portion of the packet to a second cell.
Abstract:
Presented herein are techniques for detection and characterization of buffer occupancy of a buffer in a network device. Packets are received at a network device. The packets are stored in a buffer of the network device as they are processed by the network device. An occupancy level of the buffer is sampled at a sampling rate. Occupancy levels of the buffer over time are determined from the sampling, and traffic flow through the network device is characterized based on the occupancy levels.
Abstract:
Embodiments for handling multidestination traffic in a network are described. It is determined that a destination of a packet, received at a network device, is a multihomed destination. In response to determining that the destination of the packet is a multihomed destination, a hash value is determined from a selection of header values of the packet using a hash function. The packet is forwarded to the destination using a shadow hash forwarding table based at least in part on determining, based on the hash value and a hash forwarding table, that the network device is a designated forwarder for the packet.
Abstract:
Disclosed are systems, methods, and non-transitory computer-readable storage media for monitoring application health via correctable errors. The method includes identifying, by a network device, a network packet associated with an application and detecting an error associated with the network packet. In response to detecting the error, the network device increments a counter associated with the application, determines an application score based at least in part on the counter, and telemeters the application score to a controller. The controller can generate a graphical interface based at least in part on the application score and a timestamp associated with the application score, wherein the graphical interface depicts a trend in correctable errors experienced by the application over a network.
Abstract:
Exemplified systems and methods facilitate multicasting latency optimization operations for router, switches, and other network devices, for routed Layer-3 multicast packets to provide even distribution latency and/or selective prioritized distribution of latency among multicast destinations. A list of network destinations for serially-replicated packets is traversed in different sequences from one packet to the next, to provide delay fairness among the listed destinations. The list of network destinations are mapped to physical network ports, virtual ports, or logical ports of the router, switches, or other network devices and, thus, the different sequences are also traversed from these physical network ports, virtual ports, or logical ports. The exemplified systems and methods facilitates the management of traffic that is particularly beneficial in in a data center.
Abstract:
A network device receives multi-destination packets from a first node and forwards at least a first of the multi-destination packets to another network device using a first multi-destination tree with respect to the network device. The network device detects that a link associated with the first multi-destination tree satisfies one or more criteria and, in response to detecting that the link satisfies the one or more criteria, selects a second multi-destination tree with respect to the network device. The network device forwards at least a second of the multi-destination packets to the other network device using the second multi-destination tree.
Abstract:
Disclosed are systems, methods, and non-transitory computer-readable storage media for monitoring application health via correctable errors. The method includes identifying, by a network device, a network packet associated with an application and detecting an error associated with the network packet. In response to detecting the error, the network device increments a counter associated with the application, determines an application score based at least in part on the counter, and telemeters the application score to a controller. The controller can generate a graphical interface based at least in part on the application score and a timestamp associated with the application score, wherein the graphical interface depicts a trend in correctable errors experienced by the application over a network.