Abstract:
Methods and systems are provided for modeling temperature characteristics of components in a system such as a power module for a hybrid or electric vehicle. A power dissipation value is calculated for each of the components in the system. A first filter is applied to the power dissipation value associated with a selected component to determine its estimated temperature. For each of the neighboring components located adjacent to the selected component, a cross-coupling temperature is estimated by applying other filters to each of the power dissipation values for the neighboring components. The estimated temperature of the selected component and the estimated cross-coupling temperatures for each of the neighboring components can then be added to thereby estimate the operating temperature for the selected component. Further, the operation of the system may be adjusted if the operating temperature determined for the selected component exceeds a threshold value.
Abstract:
A filter assembly is provided which includes a Faraday cage interface. Electrical noise is filtered by the Faraday cage interface. The Faraday cage interface is configured to prevent passage of electromagnetic waves.
Abstract:
A coaxial stack of laminations for a stator of an electrical machine uses laminations that are substantially identical and in direct abutment with one another. Each of the laminations has an outer periphery and an inner periphery with the outer periphery being defined by an array of outwardly projecting pins and the inner periphery being defined by an array of inwardly projecting teeth. The outwardly projecting pins cooperate with a jacket surrounding the stack to provide a cooling space through which cooling liquid flows while the teeth provide spaces therebetween for receiving for receiving stator windings. The number of pins (npin) is proportional to the number of teeth (nth) according to the relationship (2K+1)/(2Kth) times the number of teeth (nth), where K is a selected integer number and Kth is the number of teeth past which each lamination is rotated with respect to adjacent laminations so that spaces between the teeth of adjacent laminations are aligned.
Abstract:
A multiple DC-to-AC inverter system, which is suitable for an electric or hybrid vehicle application, includes a plurality of inverters controlled by a single controller. One example embodiment includes four three-phase inverters driving one six-phase motor, where the output of the first inverter is coupled to the output of the fourth inverter and the output of the second inverter is coupled to the output of the third inverter. In response to the failure of an inverter, the drive signals to the inverter that is coupled to the faulty inverter are updated such that the partner inverter can remain active without being driven into an over-current condition.
Abstract:
Methods and apparatus are provided for controlling an inverter with an under-damped L-C filter connected to a load. Samples of the inverter output are processed to generate voltage regulation signals and damping signals. The voltage regulation signals include both regulating and imbalance compensating elements, and are further modified by the damping signals. The modified voltage regulation signals control the switching circuits of the inverter to stabilize the inverter output to the load.
Abstract:
A control system and method for use in controlling a torque-controlled permanent magnet synchronous motor drive. A slew-rate limiter processes an input torque command to produce a modified torque command that is input to the motor drive. A controller is coupled to the slew-rate limiter and the motor drive for dynamically limiting the input torque command applied to the motor drive and its rate of increase. The slew rate limiter processes an applied torque command to output a modified torque command that is applied to the motor drive. Current control error signals are output by the motor drive. The RMS value of the current control error signals is computed. The RMS value is compared to low and high thresholds. If the RMS value is greater than the high threshold, the modified torque command is reduced until the RMS value is less than the high threshold. If the current control error signal is greater than the low threshold and less than the high threshold, the modified torque command is not increased in absolute value even if the input torque command is increasing in absolute value. If the RMS value is less than the low threshold, no change is made to the input torque command.
Abstract:
An electric power system for an electric vehicle includes an electric drive motor, a high voltage bus for supplying operating power to energize the drive motor, and an inverter including power switching devices and having an inverter output. The inverter is coupled between the high voltage bus and the electric drive motor and a controller is coupled to the inverter and provides motor control signals and high frequency injection signals to the inverter. An auxiliary power unit is coupled to the inverter output and has a DC output for supplying DC operating power. The auxiliary power unit supplies DC power in response to the high frequency injection signals. The electric drive motor operates in response to the motor control signals and is substantially unaffected by the high frequency injection signals.
Abstract:
Methods and systems are provided for control operation of a boost converter. The boost converter includes an input, an output, and a plurality of paths electrically connecting the input to the output. The boost converter also includes a plurality of switches disposed along the paths to control current flow between the input and the output. The system includes a controller. The controller receives a desired current to be supplied at the output. The controller determines which of the paths to utilize based at least in part on the desired current. The controller controls the switches based at least in part on the determination of which of the paths to utilize.
Abstract:
Automotive propulsion systems and methods of operation are provided. The automotive propulsion system includes a first voltage source, a power electronics device comprising a plurality of power switching devices coupled to the first voltage source, an electric motor having a plurality of windings coupled to the plurality of power switching devices and a neutral node interconnecting the plurality of windings, and a second voltage source coupled to the neutral node of the electric motor and the first voltage source.
Abstract:
An electric machine is provided with a rotor configured to be rotatable within a stator. A first and second tooth are disposed circumferentially along an outer perimeter of the rotor and at least partially define a first slot. The first and the second tooth define a respective first and second outer edge extending between a respective tooth base and a respective tooth tip. An arc radius from the origin to the outer perimeter of the rotor varies along the first outer edge of the first tooth, thereby creating a first non-uniform gap between the rotor and the stator. The arc radius from the origin to the outer perimeter of the rotor varies along the second outer edge of the second tooth, thereby creating a second non-uniform gap between the rotor and the stator. The rotor geometry is configured to reduce torque ripple without skewing either the rotor or the stator.