Abstract:
An isolator to prevent transmitted vibrations includes a ring which fits within a shaft opening of a housing. A bearing is received within the isolator and a shaft is received within the bearing. The vibrations are decoupled from a vibration transmission path by the different material of the isolator. The isolator is preferably manufactured of a rigid laminate material dissimilar to the housing material. Another embodiment of the present invention integrates the isolator directly into the bearing assembly. By manufacturing the outer member of the bearing assembly of the laminated material, the outer member similarly breaks the transmission path of vibrations without the need of the additional member. Noise is thereby substantially prevented from reaching, and from being amplified by, the housing. This greatly reduces the resulting noise and vibration.
Abstract:
A brake shoe assembly includes a brake lining and a brake lining wear sensor. The brake lining has a predetermined thickness which gradually wears away as the brake shoe assembly is used to brake a vehicle. The brake lining wear sensor has a pair of spaced electrical conductors and an electrical resistance located across the pair of spaced conductors for indicating the thickness of the brake lining. The brake lining wear sensor is positioned to wear away concurrently with the brake lining, thereby continuously changing the electrical resistance across the pair of spaced conductors. In this manner, the electrical resistance across the pair of spaced conductors is used to determine the thickness of the brake lining. The brake lining wear sensor can be assembled in alternative embodiments as disclosed.
Abstract:
A window sliding mechanism such as that which is used in passenger car doors incorporates a system to reduce friction between a window and its respective seal. A channel provided with air holes is fitted along the window edges that ride within a conventional seal. Alternatively, the air holes could be provided in the seal itself. Air is supplied to the air holes by way of a reservoir or small pump attached to the window sliding mechanism. Controlled air flow reduces the friction generated during window travel. In another embodiment, the system to reduce friction is an oscillating device provided to a conventional window sliding mechanism. The oscillating device is powered by a low cost piezo device. The oscillating device would cause the window to vibrate, thereby reducing the friction generated during window travel.
Abstract:
A pressure detector including a fiber optical cable woven through a ladder-like structure which is then encapsulated and surrounded by a cover. Light transmitted through the fiber optic cable is diminished to a value less than a threshold value upon the occurrence of microbending caused by pressure applied at any location along the length thereof. The rungs of the ladder-like structure are sized and spaced to provide a proper locus about which microbending may be produced. In addition, the rungs may be round in cross-section and/or otherwise shaped to enhance the sensitivity of the system.
Abstract:
Four embodiments of a reluctance type rotational speed sensor are disclosed. In the first embodiment, an annular magnet circumscribes a sensing coil having a unitary rotor nested within it, and is disposed between two elements which comprise the stator. In a second embodiment, a magnet is disposed between two halves which comprise a rotor, the entire assembly nesting within a sensing coil and being disposed between the two stator elements. In the third embodiment, the rotor carries multiple magnets in an axially opposed position with respect to teeth formed on the stator. The magnetic flux in the magnetic circuit increases and decreases as the rotor magnets alternate between aligned and non-aligned positions enabling measurement of angular speed in accordance with the increase and decrease of magnetic flux. Any of the first three embodiments may be used, with minor modifications, in environments where a rotating shaft turns within a stationary bore, or where a rotting bore turns about a stationary shaft. The fourth embodiment incorporates the features of the first three and further includes a caliper-like stator and coil assembly which may be removed for service without requiring extensive disassembly.
Abstract:
A cooling jacket for a motor includes an extruded jacket body having an outer peripheral surface, an inner peripheral surface, and a plurality of discrete cooling passages located between the inner and outer peripheral surfaces that provide multi-directional fluid flow. A fluid inlet is provided to direct cooling fluid into the jacket body and a fluid outlet to direct heated fluid away from the jacket body.
Abstract:
A transverse flux, switched reluctance motor includes a stator, a rotor mounted for rotation relative to the stator about an axis, and a plurality of phased coils. The stator and rotor are spaced apart from each other by a gap and a first phased coil is positioned to extend at least partially across the gap.
Abstract:
A cooling jacket for an electric motor includes a plurality of jacket portions that are attached to each other to surround a motor stator. Each jacket portion is an extruded component that includes an outer peripheral wall and an inner peripheral wall spaced inwardly from the outer peripheral wall to form a cooling space between the inner and the outer peripheral walls. A plurality of connecting walls extends between the inner and the outer peripheral walls. The connecting walls cooperate with each other to define a plurality of discrete cooling passages within the cooling space of each jacket portion. First and second end caps are mounted to the plurality of jacket portions to enclose the plurality of discrete cooling passages such that a continuous cooling loop is provided through the plurality of jacket portions and the first and second end caps.
Abstract:
A force sensor is incorporated into a disc brake, and is operable to sense the point of force application increase during application of the disc brake. The force will increase sharply once the brake pad initially contacts the rotor. The sensor is able to determine the point of this force increase, and provide this information to a control. The control powers an electric motor for providing electric motor adjustment of the position of the piston which drives the brake pad, to compensate for wear. In a preferred embodiment, the sensor includes a protective cover with a thin anvil between the cover and the sensor. The anvil is operable to transmit the force, and limit the force applied, to protect the sensor.
Abstract:
A parking brake system pneumatically actuates an air cylinder to mechanically lock a wheel brake in an applied position in response to a parking demand request. The parking brake system includes a dual hand control that has an electronic control element and a pneumatic control element. The electronic control element communicates with an electronic braking system control unit and the pneumatic control element communicates with a parking brake air reservoir. When the dual hand control is moved to a park position, the electronic control element generates an electronic control signal that applies a parking brake force to the wheel brake. The pneumatic control element generates an air signal that is sent to the air cylinder. The air cylinder includes an extendable shaft that supports a lock member. The air signal moves the lock member into engagement with a brake operating member to lock the wheel brake in the applied condition. The wheel brake remains locked even if pressure is released or leaks from the air chamber. When a release command is initiated, the electronic control unit actuates the wheel brake to unload the lock member and return the air cylinder to an unlocked position.