Abstract:
A magnetoresistive element (e.g., a spin-torque magnetoresistive memory element) includes a fixed magnetic layer, a free magnetic layer, having a high-iron alloy interface region located along a surface of the free magnetic layer, wherein the high-iron alloy interface region has at least 50% iron by atomic composition, and a first dielectric, disposed between the fixed magnetic layer and the free magnetic layer. The magnetoresistive element further includes a second dielectric, having a first surface that is in contact with the surface of the free magnetic layer, and an electrode, disposed between the second dielectric and a conductor. The electrode includes: (i) a non-ferromagnetic portion having a surface that is in contact with a second surface of the second dielectric, and (ii) a second portion having at least one ferromagnetic material disposed between the non-ferromagnetic portion of the electrode and the conductor.
Abstract:
A magnetoresistive element (e.g., a spin-torque magnetoresistive memory element) includes a fixed magnetic layer, a free magnetic layer, having a high-iron alloy interface region located along a surface of the free magnetic layer, wherein the high-iron alloy interface region has at least 50% iron by atomic composition, and a first dielectric, disposed between the fixed magnetic layer and the free magnetic layer. The magnetoresistive element further includes a second dielectric, having a first surface that is in contact with the surface of the free magnetic layer, and an electrode, disposed between the second dielectric and a conductor. The electrode includes: (i) a non-ferromagnetic portion having a surface that is in contact with a second surface of the second dielectric, and (ii) a second portion having at least one ferromagnetic material disposed between the non-ferromagnetic portion of the electrode and the conductor.
Abstract:
A magnetoresistive memory element (e.g., a spin-torque magnetoresistive memory element) includes a fixed magnetic layer, a free magnetic layer having perpendicular magnetic anisotropy, and a first dielectric, disposed between the fixed magnetic layer and the free magnetic layer. A first surface of the first dielectric is in contact with a first surface of the free magnetic layer. The magnetoresistive memory element further includes a second dielectric, having a first surface that is in contact with a second surface of the free magnetic layer, a conductor, including electrically conductive material, and an electrode, disposed between the second dielectric and the conductor. The electrode includes: (i) a non-ferromagnetic portion having a surface that is in contact with a second surface of the second dielectric, and (ii) a second portion including at least one ferromagnetic material disposed between the non-ferromagnetic portion of the electrode and the conductor.
Abstract:
A magnetoresistive memory element (for example, a spin-torque magnetoresistive memory element), includes first and second dielectric layers, wherein at least one of the dielectric layers is a magnetic tunnel junction. The memory element also includes a free magnetic layer having a first surface in contact with the first dielectric layer and a second surface in contact with the second dielectric layer. The free magnetic layer, which is disposed between the first and second dielectric layers, includes (i) a first high-iron interface region located along the first surface of the free magnetic layer, wherein the first high-iron interface region has at least 50% iron by atomic composition, and (ii) a first layer of ferromagnetic material adjacent to the first high-iron interface region, the first high-iron interface region between the first layer of ferromagnetic material and the first surface of the free magnetic layer.
Abstract:
A sensor and fabrication process are provided for forming reference layers with substantially orthogonal magnetization directions having zero offset with a small compensation angle. An exemplary embodiment includes a sensor layer stack of a magnetoresistive thin-film based magnetic field sensor, the sensor layer stack comprising a pinning layer; a pinned layer including a layer of amorphous material over the pinning layer, and a first layer of crystalline material over the layer of amorphous material; a nonmagnetic coupling layer over the pinned layer; a fixed layer over the nonmagnetic coupling layer; a tunnel barrier over the fixed layer; and a sense layer over the nonmagnetic intermediate layer. Another embodiment includes a sensor layer stack where a pinned layer including two crystalline layers separated by a amorphous layer.
Abstract:
A sensor and fabrication process are provided for forming reference layers with substantially orthogonal magnetization directions having zero offset with a small compensation angle. An exemplary embodiment includes a sensor layer stack of a magnetoresistive thin-film based magnetic field sensor, the sensor layer stack comprising a pinning layer; a pinned layer including a layer of amorphous material over the pinning layer, and a first layer of crystalline material over the layer of amorphous material; a nonmagnetic coupling layer over the pinned layer; a fixed layer over the nonmagnetic coupling layer; a tunnel barrier over the fixed layer; and a sense layer over the nonmagnetic intermediate layer. Another embodiment includes a sensor layer stack where a pinned layer including two crystalline layers separated by a amorphous layer.
Abstract:
A method of fabricating a magnetoresistive device includes forming a magnetically fixed region on one side of an intermediate region. Forming the magnetically fixed region may include forming a first ferromagnetic region and forming an antiferromagnetic coupling region on one side of the first ferromagnetic region. The method may also include treating a surface of the coupling region by exposing the surface to a gas, and forming a second ferromagnetic region on the treated surface of the coupling region.
Abstract:
A method of fabricating a magnetoresistive device may comprise forming an electrically conductive region and forming a first seed region on one side of the electrically conductive region. A surface of the first seed region may be treated by exposing the surface to a gas. A second seed region may be formed on the treated surface of the first seed region. The method may also comprise forming a magnetically fixed region on one side of the second seed region.
Abstract:
Aspects of the present disclosure are directed to magnetoresistive stacks including regions having increased height-to-diameter ratios. Exemplary magnetoresistive stacks—for example, used in a magnetic tunnel junction (MTJ) magnetoresistive device—of the present disclosure include one or more multilayer synthetic antiferromagnetic structures—SAFs—or synthetic ferromagnetic structures—SyFs—(A) in order to promote stability of the SAF or SyF, e.g., for smaller-sized MTJs (200).
Abstract:
Aspects of the present disclosure are directed to magnetic tunnel junction (MTJ) structures comprising multiple MTJ bits connected in series. For example, a magnetic tunnel junction (MTJ) stack according to the present disclosure may include at least a first MTJ bit and a second MTJ bit stacked above the first MTJ bit, and a resistance state of the MTJ stack may be read by passing a single read current through both the first MTJ bit and the second MTJ bit.