Abstract:
Novel absorbable polymeric blends having bimodal molecular weight distribution are disclosed. The bimodal blends have a first component that is a polylactide polymer or a copolymer of lactide and glycolide having a bimodal molecular weight distribution, and a second component that is a poly(p-dioxanone) polymer of unimodal or bimodal molecular weight distribution. Alternately, the bimodal blends have a first component that is a polylactide polymer or a copolymer of lactide and glycolide having a unimodal molecular weight distribution, and a second component that is a poly(p-dioxanone) polymer of bimodal molecular weight distribution. The novel polymeric bimodal molecular weight blends provide medical devices having improved dimensional stability. Also disclosed are novel absorbable medical devices made from these novel bimodal polymer blends, as well as novel methods of manufacture.
Abstract:
Novel absorbable monofilament sutures and fibers having unique and improved properties are disclosed including mid-term strength retention post-implantation. Also disclosed is a novel method of manufacturing absorbable monofilament sutures and fibers. The sutures and fibers are extruded from poly(p-dioxanone-co-glycolide) copolymers.
Abstract:
Novel absorbable polymeric blends are disclosed. The blends have a first absorbable polymer type that is a polylactide polymer or a copolymer of lactide and glycolide and a second absorbable polymer type that is poly(p-dioxanone), wherein the first absorbable polymer type or the second absorbable polymer type or the first absorbable polymer type and the second absorbable polymer type additionally comprise a first polymeric component and a second polymeric component. The first polymeric component has a higher weight average molecular weight than the second polymeric component and at least one of said components is at least partially end-capped by a carboxylic acid. The novel polymeric blends are useful for manufacturing medical devices having dimensional stability, having engineered degradation and breaking strength retention in vivo. Also disclosed are novel absorbable medical devices made from these novel polymer blends, as well as novel methods of manufacture.
Abstract:
The present invention is directed to methods for processing absorbable, slow-to-crystallize poly(p-dioxanone) ground resin and its fines utilizing a twin-screw extruder apparatus to produce uniform pellets. Advantageously, the ground resin materials resulting from solid-state polymerization do not undergo processing, such as sieving, to remove fines from the feedstock for an extrusion and pelletizing system that has been configured with an inverted temperature profile along the extrusion barrel. The resulting PDS pellets have improved resin uniformity and greater polymer yield for improved operational efficiencies and production of extruded filaments.
Abstract:
The present invention is directed to devices and methods for monitoring the purity of monomers, adjusting the polymerization conditions, and consequently improving a polymerization reaction process. In one method, monomer purity is estimated using an on-line evaluation by raising the temperature of the monomer formulation having a defined melting point to a first elevated temperature at least 20° C. above a preset melting point for a selected monomer formulation; cooling the monomer formulation at a controlled cooling rate in the range from about 0.5 to 50° C. per minute; measuring at least one critical property selected from the group consisting of a) crystallization peak temperature at the onset of crystallization, b) an area under the crystallization peak, which represents the heat or enthalpy of crystallization, ΔHc and combinations thereof, comparing the at least one of the selected critical properties measures relative to such properties for standard setting monomer formulations.
Abstract:
Novel surgical sutures and novel medical devices made from novel semi-crystalline, glycolide-rich A-B-A triblock copolymers of glycolide and lactide, wherein said B-segment is a fully amorphous random copolymer of glycolide and lactide, for long term medical applications are disclosed. The novel polymer compositions are useful for long term absorbable surgical sutures, meshes and other medical devices, especially for patients with compromised healing. The novel sutures have improved properties and improved breaking strength retention, while still substantially absorbing within about a 120-day period post-implantation.
Abstract:
The invention relates to novel processes for the lamination of semi-crystalline, high-melting point, low glass transition polymeric films, which are extruded and subsequently laminated on various thermally sensitive substrates to form laminated medical device constructs in a specific time interval to allow low processing temperatures to avoid polymer film and/or substrate degradation or heat-related distortions. Also disclosed are laminated medical device constructs made from such processes.
Abstract:
The present invention is directed methods of making absorbable poly(p-dioxanone) pellets by melt polymerization of p-dioxanone conducted in a single reactor with a temperature regulator by charging a melt reactor with a mixture of p-dioxanone (PDO) monomer, initiator, catalyst, and optionally a dye; melt polymerizing the mixture in the melt reactor with sufficient agitation of the mixture to allow complete mixing of the monomer and for sufficient time to form a PDO polymer product having an unreacted PDO monomer content of at least 65 mole percent; placing the PDO polymer product under a vacuum to remove at least portion of unreacted PDO; discharging the PDO polymer product from the melt reactor directly into an in-line, underwater pelletizer to produce undried PDO pellets, collecting the undried PDO pellets, and storing the collected PDO pellets in the freezer or a vacuum chamber prior to drying.
Abstract:
Novel absorbable polymeric blends are disclosed. The blends have a first absorbable polymer type that is a polylactide polymer or a copolymer of lactide and glycolide and a second absorbable polymer type that is poly(p-dioxanone), wherein the first absorbable polymer type or the second absorbable polymer type or the first absorbable polymer type and the second absorbable polymer type additionally comprise a first polymeric component and a second polymeric component. The first polymeric component has a higher weight average molecular weight than the second polymeric component and at least one of said components is at least partially end-capped by a carboxylic acid. The novel polymeric blends are useful for manufacturing medical devices having dimensional stability, having engineered degradation and breaking strength retention in vivo. Also disclosed are novel absorbable medical devices made from these novel polymer blends, as well as novel methods of manufacture.
Abstract:
Novel semi-crystalline, p-dioxanone-rich ABA triblock copolymers of p-dioxanone and epsilon-caprolactone, where “B” block is a random copolymer of p-dioxanone and epsilon-caprolactone, and absorbable devices for long term medical applications are disclosed. The novel polymer compositions are useful for long term absorbable surgical sutures, and other medical devices.