摘要:
A method for preparing a multilayer of nanocrystals. The method includes the steps of (i) coating nanocrystals surface-coordinated by a photosensitive compound, or a mixed solution of a photosensitive compound and nanocrystals surface-coordinated by a material miscible with the photosensitive compound, on a substrate, drying the coated substrate, and exposing the dried substrate to UV light to form a first monolayer of nanocrystals, and (ii) repeating the procedure of step (i) to form one or more monolayers of nanocrystals on the first monolayer of nanocrystals. Further, an organic-inorganic hybrid electroluminescence device using a multilayer of nanocrystals prepared by the method as a luminescent layer.
摘要:
A nanocrystal composite that includes a matrix including semiconductor nanocrystals, and a barrier layer disposed on at least a portion of the surface of the matrix and including a polymer with low oxygen permeability, low moisture permeability, or both.
摘要:
A nanocrystal electroluminescence device comprising a polymer hole transport layer, a nanocrystal light-emitting layer and an organic electron transport layer wherein the nanocrystal light-emitting layer is independently and separately formed between the polymer hole transport layer and the organic electron transport layer. According to the nanocrystal electroluminescence device, since the hole transport layer, the nanocrystal light-emitting layer and the electron transport layer are completely separated from one another, the electroluminescence device provides a pure nanocrystal luminescence spectrum having limited luminescence from other organic layers and substantially no influence by operational conditions, such as voltage. Further included is a method for fabricating the nanocrystal electroluminescence device.
摘要:
A nanocrystal electroluminescence device comprising a polymer hole transport layer, a nanocrystal light-emitting layer and an organic electron transport layer wherein the nanocrystal light-emitting layer is independently and separately formed between the polymer hole transport layer and the organic electron transport layer. According to the nanocrystal electroluminescence device, since the hole transport layer, the nanocrystal light-emitting layer and the electron transport layer are completely separated from one another, the electroluminescence device provides a pure nanocrystal luminescence spectrum having limited luminescence from other organic layers and substantially no influence by operational conditions, such as voltage. Further, a method for fabricating the nanocrystal electroluminescence device.
摘要:
A nanocrystal includes a core including a Group III-V semiconductor and a transition metal alloyed with the Group III-V semiconductor, wherein the transition metal is present at a higher molar concentration in an outermost surface layer of the core than in a central portion of the core.
摘要:
A case including a case main body, a matrix including a semiconductor nanocrystal, the matrix disposed in the case main body, and a sealant disposed on the case main body, wherein the sealant has a gas permeability of about 1 cubic centimeter at standard temperature and pressure per centimeter per meter squared per day per atmosphere or less and a tensile strength of about 5 megaPascals or more, and wherein the semiconductor nanocrystal is a Group II-VI compound, a Group III-V compound, a Group IV-VI compound, a Group IV element, a Group IV element, a Group IV compound, or a combination thereof.
摘要:
A composition for manufacture of a light emitting particle-polymer composite, the composition including a light emitting particle, a first monomer including at least two thiol groups, each located at a terminal end of the first monomer, and a second monomer including at least two unsaturated carbon-carbon bonds, each located at a terminal end of the second monomer.
摘要:
Disclosed herein is a quantum dot phosphor for light emitting diodes, which includes quantum dots and a solid substrate on which the quantum dots are supported. Also, a method of preparing the quantum dot phosphor is provided. Since the quantum dot phosphor of the current invention is composed of the quantum dots supported on the solid substrate, the quantum dots do not aggregate when dispensing a paste obtained by mixing the quantum dots with a paste resin for use in packaging of a light emitting diode. Thereby, a light emitting diode able to maintain excellent light emitting efficiency can be manufactured.
摘要:
Disclosed herein is a quantum dot phosphor for light emitting diodes, which includes quantum dots and a solid substrate on which the quantum dots are supported. Also, a method of preparing the quantum dot phosphor is provided. Since the quantum dot phosphor of the current invention is composed of the quantum dots supported on the solid substrate, the quantum dots do not aggregate when dispensing a paste obtained by mixing the quantum dots with a paste resin for use in packaging of a light emitting diode. Thereby, a light emitting diode able to maintain excellent light emitting efficiency can be manufactured.
摘要:
Disclosed is a preparation method of multi-shell nanocrystals in one pot. In an embodiment, a core is formed from a precursors in the presence of solvent and then, without a core separation step, two or more kinds of precursors are added sequentially to dispose a shell on the surface of the core. The method provides a scaleable process suitable for mass production of high quality multi-shell nanocrystals, having diverse bandgaps and high luminescence efficiency. The method does not use a core separation procedure after core synthesis.