Abstract:
A method of controlling an electric motor assembly includes detecting a backspin event of an electric motor, and managing a response to the detected backspin event of the electric motor. The backspin event of the electric motor is detected based at least in part on feedback from a sensor configured to measure a current or a voltage on a cable coupled to the electric motor. The response includes communicating an alert to personnel, controlling the voltage on the cable to be less than a voltage threshold, or any combination thereof.
Abstract:
A system including a control system is provided. The control system includes a main drive that receives power from a power source and outputs a variable frequency and a variable amplitude AC voltage. The control system also includes a controller to interface with the main drive and an electric machine. The controller receives one or more electrical signals associated with an operating condition of the electric machine from one or more sensors disposed between the electric machine and the main drive. The controller determines correction information based on the received electrical signals and based on a desired operating condition of the electric machine. The controller transmits the correction information to the main drive. The correction information corresponds to a rotor position of the electric machine or operating commands configured to implement the desired operating condition of the electric machine.
Abstract:
The system and method of the invention pertains to use of a back iron on one or both ends of the impeller to increase the magnetic field density, and thus strengthen the magnetic coupling. In addition, pie-shaped (i.e. wedge) magnets, or variations thereof, increase the utilization volume and hence provide higher torque to allow the use of less expensive material (e.g. ferrites). In another embodiment, the rotor side is constructed with a Halbach array which increases the torque without the need to add a back iron piece. In another embodiment, an axial flux stator is implemented to replace the drive-end magnets and the drive motor.
Abstract:
A controller is provided which can interface with a variable frequency drive and a motor, the controller having (a) one or more voltage and current sensors which can interface with a power line linking the variable frequency drive and the motor; and (b) a signal interface module which can receive electrical signals associated with an operating condition of the motor from the one or more voltage and current sensors. The signal interface module can correlate the received electrical signals with a rotor position of the motor, and transmit signals corresponding to rotor position, to the variable frequency drive. The data provided by the controller if conveyed as a rotor position, may cause the variable frequency drive to change one or more of its operating parameters to maintain proper synchronization of the rotor and its associated stator currents. Alternatively, the controller may directly control variable frequency drive operating parameters.
Abstract:
A method of controlling torque ripple in an electrical machine that includes a field winding for creating nominally constant field current using DC current and an armature winding for creating a rotating magnetic field using AC current, calls for superimposing a spatially varying current component on to the DC current of the field winding. Other methods are also disclosed that are suitable for electrical machines that have a winding that is excited with nominal DC current including SRMs, FSMs, and wound-field synchronous motors.
Abstract:
An electric machine can include a stator core having a plurality of core teeth that define a plurality of core slots in a surface thereof. A winding can be housed at least partially in the core slots. The winding can include a tube defining a channel through at least a portion thereof and one or more wires disposed along a surface of the tube that is opposite the channel. A cooling system can be operably coupled with the channel and configured to move a cooling fluid through the channel.
Abstract:
A system includes a first working fluid compressor configured to pressurize a working fluid, and a prime mover coupled to the first working fluid compressor and configured to provide a mechanical input into the first working fluid compressor. An exhaust assembly is coupled to the prime mover and is configured to receive exhaust heat from the prime mover, the exhaust assembly including a generator configured to generate electric current based on the exhaust heat received by the exhaust assembly. A second working fluid compressor includes an electric motor electrically and synchronously coupled to the generator and configured to pressurize the working fluid.
Abstract:
A superconducting generator including an armature configured to be rotated via a shaft and a stationary field disposed concentric to and radially outward from the armature. The stationary field including a superconducting field winding and a vacuum vessel having an inner wall of one of a non-magnetic material or a paramagnetic material facing the armature, an opposed outer wall of a ferromagnetic material and a plurality of sidewalls coupling the inner wall and the opposed outer wall. The superconducting field winding is disposed in the vacuum vessel. A wind turbine and method are additionally disclosed. The wind turbine includes a rotor having a plurality of blades. The wind turbine further includes a shaft coupled to the rotor. Moreover, the wind turbine includes the superconducting generator coupled to the rotor via the shaft.
Abstract:
An energy conversion system includes a low-impedance generator having at least one armature winding set. The armature winding set includes a plurality of single-phase coils. The system also includes a current source converter assembly electrically coupled to an armature of the generator. The current source converter assembly includes at least one current source converter that includes a current source rectifier coupled to a current source inverter via a DC link and at least one capacitor across the plurality of single-phase armature coils. The capacitor(s) of the current source converter(s) is configured to absorb high frequency components of current pulses generated by the current source converter so as to minimize current ripple in a current applied to the plurality of single-phase coils.
Abstract:
An electric machine includes at least one rotor module. A rotor module includes a rotor hub having a hub body, and a plurality of first protrusions and a plurality of second protrusions. One or more first protrusions include an elongated portion and a head portion. One or more second protrusions include a wedge-shaped profile. The rotor module further includes a magnetic core having a plurality of core members disposed on the rotor hub. A core member of the plurality of core members is disposed such that the head portion of the first protrusion located between the adjacent second protrusions engages with the core member, and each of the one or more second protrusions extends at least partially in a space between adjacent core members of the plurality of core members. Moreover, the rotor module includes a permanent magnet disposed in a space between the adjacent core members.