Abstract:
The present disclosure relates to a snubber circuit which comprises a static snubber unit, connected in parallel with the switch, for balancing a static voltage sharing across a switch when the switch is in a state of turn-on or turn-off; and a dynamic snubber unit for balance a dynamic voltage sharing across the switch when the switch is in a process of turn-on or turn-off, comprising a dynamic voltage sharing capacitor connected in parallel with the switch and having a relationship between a capacitance and a voltage of the dynamic voltage sharing capacitor; and a controller for controlling the capacitance of the dynamic voltage sharing capacitor to be in a predetermined working area of capacitance rising while the voltage across the switch is increasing. The present disclosure also relates to a power semiconductor device.
Abstract:
The present disclosure relates to a snubber circuit which comprises a static snubber unit, connected in parallel with the switch, for balancing a static voltage sharing across a switch when the switch is in a state of turn-on or turn-off; and a dynamic snubber unit for balance a dynamic voltage sharing across the switch when the switch is in a process of turn-on or turn-off, comprising a dynamic voltage sharing capacitor connected in parallel with the switch and having a relationship between a capacitance and a voltage of the dynamic voltage sharing capacitor; and a controller for controlling the capacitance of the dynamic voltage sharing capacitor to be in a predetermined working area of capacitance rising while the voltage across the switch is increasing. The present disclosure also relates to a power semiconductor device.
Abstract:
An electrical circuit for a power converter includes a first switching device proximate an AC source. The circuit also includes a voltage measurement device proximate a DC link and extends between the AC source and the DC link. The circuit further includes a DC voltage source and a first capacitive device. The first capacitive device is positioned between the first switching device and the voltage measurement device. The circuit further includes a second switching device positioned between the first capacitive device and the voltage measurement device. The circuit also includes a controller operatively coupled to the DC voltage source, the voltage measurement device, and the switching devices. The controller is configured to open the second switching device when a measured voltage signal generated by the voltage measurement device is substantially representative of a reference voltage value.
Abstract:
A power converter is presented. The power converter includes at least one leg operatively coupled between a first bus and a second bus and includes a first string including a plurality of non-controllable semiconductor switches, a first node, a second node, and a third node, where the first node is coupled to a third bus, one or more second strings, where each of the one or more second strings includes at least one fully controllable semiconductor switch, and where one of the second strings is coupled between the first node and the third bus and another second string is coupled between the second node and the third node, and one or more third strings, where each of the one or more third strings includes at least one energy storage device and is coupled to the first string, the one or more second strings, or a combination thereof.
Abstract:
A DC power transmission system is configured to generate an electric field including components substantially constant with respect to time and varying with time. The DC power transmission system includes an AC stage configured to receive AC electrical power. The AC stage includes a transformer including primary windings and secondary windings configured to be electromagnetically coupled to, and electrically isolated from, each other. The AC stage also includes an AC/AC converter having substantially no insulating features against the at least one substantially constant component of the electric field. The AC/AC converter is electrically coupled to the primary windings. The DC power transmission system also includes an AC/DC conversion stage positioned downstream of the AC stage. The AC/DC conversion stage includes an AC/DC rectifier configured to convert AC electrical power to DC electrical power without external control. The AC/DC rectifier is coupled to the secondary windings.
Abstract translation:直流电力传输系统被配置为产生包括相对于时间基本上恒定且随时间变化的分量的电场。 直流电力传输系统包括被配置为接收AC电力的AC级。 AC级包括变压器,其包括初级绕组和次级绕组,其被配置为电磁耦合到彼此并且彼此电隔离。 AC级还包括AC / AC转换器,其基本上没有与电场的至少一个基本恒定的分量相对的绝缘特性。 AC / AC转换器电耦合到初级绕组。 直流电力传输系统还包括位于AC级下游的AC / DC转换级。 AC / DC转换级包括AC / DC整流器,被配置为在没有外部控制的情况下将AC电力转换为DC电力。 AC / DC整流器耦合到次级绕组。