Abstract:
A permanent magnet machine, a rotor assembly for the machine, and a pump assembly. The permanent magnet machine includes a stator assembly including a stator core configured to generate a magnetic field and extending along a longitudinal axis with an inner surface defining a cavity and a rotor assembly including a rotor core and a rotor shaft. The rotor core is disposed inside the cavity and configured to rotate about the longitudinal axis. The rotor assembly further including a plurality of permanent magnets for generating a magnetic field which interacts with the stator magnetic field to produce torque. The permanent magnets configured as one of internal or surface mounted. The rotor assembly also including a plurality of retaining clips configured to retain the plurality of permanent magnets relative to the rotor core. The pump assembly including an electric submersible pump and a permanent magnet motor for driving the pump.
Abstract:
A permanent magnet (PM) machine includes a rotor and a stator assembly. The rotor includes a plurality of permanent magnets disposed about an axis of rotation. The stator assembly includes a stator body, a plurality of coil sides and a plurality of sintered iron magnetic wedges. The stator body includes a plurality of stator teeth defining a plurality of stator slots, each stator slot having an inside position and an outside position, such that each of the plurality of stator slots includes a first plurality of inside positions, and a first plurality of outside positions. The first plurality of coil sides are disposed in each of the first plurality of inside positions and the first plurality of outside positions. The first plurality of coil sides correspond to a first power phase. The first plurality of coil sides are electrically coupled to one another by a first plurality of end-coils. The plurality of sintered iron magnetic wedges are disposed at the openings of at least one stator slot of the plurality of stator slots.
Abstract:
A method for estimating a speed of an induction motor includes applying a voltage to the induction motor and measuring a current of the induction motor. A current fast fourier transform (FFT) of the current is then determined and a slip of the induction motor is calculated based on the current FFT. A speed of the induction motor is then estimated based on the slip of the induction motor.
Abstract:
An AC electric machine that includes a dual magnetic phase material ring is disclosed. The AC electric machine includes a stator assembly and a rotor assembly positioned within the stator assembly and configured to rotate relative thereto, the rotor assembly comprising a rotor core including a stack of rotor laminations that collectively form the rotor core, the rotor core including a plurality of rotor poles separated by gaps therebetween. The AC electric machine also includes a dual magnetic phase material ring positioned about the stack of rotor laminations, the dual magnetic phase material ring comprising a first ring portion comprising a magnetic portion and a second ring portion comprising a non-magnetic portion.
Abstract:
An electric machine that includes a rotor core made of magnetic steel; a stator configured with stationary windings therein; openings disposed within or on the rotor core; and a rotor circuit that is configured to introduce saliency based on an orientation of part of the rotor circuit in relationship to a pole location of the electric machine, where the rotor circuit is made of a conductive, non-magnetic material. A rotor component and various embodiments of electric machines are also disclosed. The present invention has been described in terms of specific embodiment(s), and it is recognized that equivalents, alternatives, and modifications, aside from those expressly stated, are possible and within the scope of the appending claims.
Abstract:
A rotor component that comprises a rotor circuit configured for use with either an interior permanent magnet (IPM) machine or a synchronous reluctance machine (SRM) that includes a pole circuit made of a conductive, non-magnetic material and has a midpoint that substantially aligns with a d-axis of the IPM or SRM. An electric machine with a similar rotor component therein or having a loop or ring of a conductive, non-magnetic material that is substantially concentric about a d-axis of the electric machine.
Abstract:
According to some embodiments, a synchronous reluctance machine is disclosed. The machine includes a stator; a rotor disposed within the stator and configured to rotate relative to the stator; and a sleeve disposed circumferentially around the rotor.
Abstract:
A magnet management method of controlling a ferrite-type permanent magnet electrical machine includes receiving and/or estimating the temperature permanent magnets; determining if that temperature is below a predetermined temperature; and if so, then: selectively heating the magnets in order to prevent demagnetization and/or derating the machine. A similar method provides for controlling magnetization level by analyzing flux or magnetization level. Controllers that employ various methods are disclosed. The present invention has been described in terms of specific embodiment(s), and it is recognized that equivalents, alternatives, and modifications, aside from those expressly stated, are possible and within the scope of the appending claims.
Abstract:
A synchronous reluctance machine includes a rotor having a first plate, a second plate, a first set of rotor poles, and a first set of axial stiffeners. Each rotor pole of the first set of rotor poles includes a first plurality of laminations axially stacked between the first plate and the second plate, and each lamination of the first plurality of laminations includes first channels configured to carry magnetic flux and a first plurality of passages spaced between the first channels. Each axial stiffener of the first set of axial stiffeners is disposed within a respective passage of the first plurality of passages. A first end of each axial stiffener of the first set of axial stiffeners interfaces with the first plate, and a second end of each axial stiffener of the first set of axial stiffeners interfaces with the second plate.
Abstract:
A magnetic component including first and second regions, and a method of varying the magnetization values in different regions of the magnetic component are disclosed. The first and the second regions are characterized by a nitrogen content that is different from each other. At least one of the first region and the second region is partially-magnetic and has a nitrogen content in a range from about 0.1 weight % to about 0.4 weight % of that region. A concentration of carbon, if present, of both the first and second regions is less than about 0.05 weight % of the respective regions.