Abstract:
A transformer includes a ceramic housing, a primary winding disposed within the housing, a secondary winding disposed outside the winding, and a core extending through a first aperture in the housing. The housing includes a first portion and a second portion. Each of the first and second portions include a planar structure having a first housing aperture, and a plurality of sidewalls extending perpendicular to the planar structure along a plurality of edges of the planar structure. The first and second portions interface with one another when the ceramic housing is assembled such that the sidewalls of the first and second portions overlap with one another.
Abstract:
A slot liner for a stator assembly in one embodiment includes a mesh structural member and a coating. The coating is disposed on at least one side of the mesh structural member, and includes a mixture of a filler and a polyimide resin. The filler is a high thermal conductivity electrical insulating (HTCEI) filler, and includes particles of at least one of boron nitride, aluminum nitride, or a diamond material.
Abstract:
A slot liner for a rotor assembly in one embodiment includes a metallic support member and a coating. The coating is disposed on at least one side of the metallic support member, and includes a mixture of a filler and a polyimide resin. The filler is a high thermal conductivity electrical insulating (HTCEI) filler, and includes particles of at least one of boron nitride, aluminum nitride, or a diamond material.
Abstract:
Embodiments of an insulation for electrical components are provided herein. In one embodiment an insulation for an electrical component may include a filler dispersed throughout a polymer matrix, the filler comprising a talc containing nanoclay and boron nitride. In one embodiment, an insulating tape for an electrical component may include a substrate and an insulation disposed atop the substrate, the insulation comprising a filler dispersed throughout a polymer matrix, the filler comprising a talc containing nanoclay and boron nitride. In one embodiment, a stator bar may include a conductive core and an insulating tape disposed atop one or more surfaces of the conductive core, the insulating tape comprising a substrate and an insulation disposed atop the substrate, the insulation comprising a filler dispersed throughout a polymer matrix, the filler comprising a talc containing nanoclay and boron nitride.
Abstract:
A slot liner is provided for a stator and/or a rotor of an electric machine and includes a body configured to be received within a stator slot of the stator and/or within a rotor slot of the rotor. The body extends a length from a first end to an opposite second end and a width from a first edge to an opposite second edge. The body includes an inner segment and first and second outer segments that extend along the length of the body. The first and second outer segments flank the inner segment such that the inner segment extends between the first and second outer segments along the length of the body. The inner segment includes at least one different material than the first and second outer segments such that a thermal conductivity of the inner segment is greater than a thermal conductivity of the first and second outer segments.
Abstract:
An electric machine includes a housing, a stator core positioned within the housing, a wire wound about the stator core to form a plurality of end-turns that extend from an end of the stator core, and a thermal conductor positioned between the plurality of end-turns and the housing. The thermal conductor includes a substrate and a thermally conductive coating formed on a surface of the substrate. The thermally conductive coating includes a thermally conductive, dielectric material configured to transfer heat from the plurality of end-turns to the substrate.
Abstract:
An armature is presented. The armature includes an armature winding having a plurality of coils, wherein each coil of the plurality of coils is spaced apart from adjacent coils and comprise includes a first side portion and a second side portion. The armature further includes a first electrically insulating winding enclosure. Furthermore, the armature includes a second electrically insulating winding enclosure disposed at a radial distance from the first electrically insulating winding enclosure, wherein the armature winding is disposed between the first electrically insulating winding enclosure and the second electrically insulating winding enclosure. Moreover, the armature includes an electrically insulating coil side separator disposed between the first side portion and the second side portion of the plurality of coils of the armature winding. A superconducting generator including the armature and a wind turbine having such superconducting generator are also presented.
Abstract:
An insulative assembly includes an insulative mica-based carrier film and first and second resistive grading layers joined to opposite sides of the mica-based carrier film. The first resistive material layer is configured to engage one or more conductors and insulate the one or more conductors from at least one other conductor. A method for creating an insulative assembly for one or more conductors includes obtaining an insulative mica-based carrier film, depositing a first resistive grading layer on a first side of the mica-based carrier film, and depositing a second resistive grading layer on an opposite, second first side of the mica-based carrier film.
Abstract:
An electrical insulating system and an associated insulated stator bar are provided. The electrical insulating system includes an electrically insulating mica paper and a fiber glass disposed on a first surface of the electrically insulating mica paper. The electrically insulating mica paper and the fiber glass are impregnated with a curable binder resin composition. The curable binder resin composition includes about 21 weight percent to about 73 weight percent of a solid or semi-solid epoxy resin having an epoxide functionality of about 2.5, about 0.8 weight percent to about 49 weight percent of a liquid epoxy resin having an epoxide functionality of about 2, about 4 weight percent to about 15 weight percent of a bisphenol A-formaldehyde novolac, a metal acetylacetonate catalyst, and about 2.5 weight percent to about 15 weight percent of a toughener selected from the group consisting of polyethersulfone, methylmethacrylate butadiene styrene, and a combination thereof.