Abstract:
A device location determination includes authenticating a device within range of a vehicle via a node in a vehicle. The vehicle includes a first peripheral device and a second peripheral device that is disposed at a location on the vehicle that is different than the first peripheral device. The peripheral devices are coupled to an antenna of the node. The device location determination also includes receiving from the device a first signal strength value associated with a first signal of the first peripheral device, a second signal strength value associated with a second signal of the second peripheral device, and a third signal strength value associated with a third signal transmitted by the node. The device location determination also includes determining a location of the device from the signal strength values and performing a remote function with respect to the vehicle.
Abstract:
A system for context-based adaptive virtual experience control in a vehicle is provided. The system includes an output device configured for providing a sensory output to a user of the vehicle and a computerized virtual experience control module configured for controlling the output device based upon a virtual experience mode. The system further includes a computerized context-based adaptive control module configured for monitoring contextual data related to one of the user of the vehicle or operation of the vehicle, monitoring feedback from the user related to one of favor or disfavor related to the virtual experience mode, and utilizing the contextual data and the feedback from the user to selectively, automatically command activation of the virtual experience mode.
Abstract:
A vehicle includes a plurality of microphones to obtain speech from a person outside the vehicle as an input signal and a sensor system to determine a location and orientation of the person relative to the vehicle. The vehicle also includes a controller to determine characteristics of the input signal and to determine whether to perform speech enhancement on the input signal based on one or more of the characteristics and the location and orientation of the person.
Abstract:
Computer-implemented methods, systems and apparatus are disclosed for providing notification at a vehicle that a pre-paired consumer electronics device (CED) has been left inside the vehicle. The vehicle includes a processor and a vehicular system controllable via the processor. The processor can receive an alert signal that indicates that a pre-paired CED has been left inside the vehicle during a time period after a trigger event has occurred. The processor is further configured to control activation of the vehicular system, in response to receiving the alert signal, to cause the vehicular system to generate another signal that is perceptible outside the vehicle to indicate that the pre-paired CED has been left inside the vehicle.
Abstract:
An application is launched in response to identifying a specific user in the vehicle. Upon launching the application, a historical comfort setting profile is automatically downloaded for the user. The historical profile includes individual comfort setting records. The historical profile is updated with comfort setting record(s) corresponding to each instance of an automatic climate control setting, a manual climate control setting, or an alternate climate control setting while the specific user is in the vehicle. An in-vehicle setting is dynamically predicted within respective predetermined time increments while the specific user is in the vehicle or in response to a user request. The predicted in-vehicle setting is dependent upon geographic location data points and a set of climate control related settings retrieved from the individual comfort setting records. A most recently predicted in-vehicle setting is caused to be displayed on a vehicle display while the specific user is in the vehicle.
Abstract:
A system and method for employing BLE nodes in a PEPS system to determine whether a FOB is within or outside of a vehicle. The method includes interrogating the FOB using a signal transmitted by a BLE device on the vehicle to determine whether the FOB is in a predetermined vicinity of the vehicle and receiving a Bluetooth signal at the BLE device that is transmitted by the FOB if the FOB is in the vicinity of the vehicle. The method also included determining a transmit power of the Bluetooth signal transmitted by the FOB and determining a receive power of the Bluetooth signal transmitted by the FOB and received by the BLE device. The method uses the transmit power and the receive power in a comparison process to determine whether the FOB is inside or outside of the vehicle.
Abstract:
An augmented reality based interactive troubleshooting and diagnostic system and related operating methods are presented here, including a diagnostic communication method for a vehicle having an onboard diagnostics subsystem. An exemplary embodiment of the method uses a mobile user device to obtain self-diagnostic information generated by the onboard diagnostics subsystem. The method continues by sending a query to a solution database system, wherein the query includes the obtained self-diagnostic information and vehicle configuration data descriptive of the vehicle. The mobile user device receives solution data provided by the solution database system in response to the query. The solution data addresses at least one topic associated with the obtained self-diagnostic information. The method continues by operating the camera and the display element in response to the received solution data to perform an augmented reality procedure associated with the at least one topic.
Abstract:
A system and method that act as a performance driving tool and provide feedback to a driver, such as real-time visual feedback delivered via an augmented reality device. According to one embodiment, the performance driving system gathers pertinent vehicle information and driver information (e.g., the direction of the driver's gaze as determined by a wearable head-mounted-display (HMD)) and uses these inputs to generate real-time visual feedback in the form of virtual driving lines and other driving recommendations. These driving recommendations can be presented to the driver via an augmented reality device, such as a heads-up-display (HUD), where the virtual driving lines are projected onto the vehicle windshield so that they are superimposed on top of the actual road surface seen by the driver and can show the driver a suggested line or path to take. Other driving recommendations, like braking, acceleration, steering and shifting suggestions, can also be made.
Abstract:
Computer-implemented methods, systems and apparatus are disclosed for providing a notification when a vehicle has been accessed by an unauthorized person. An onboard computer system of a vehicle is activated in response to a trigger event indicating that the vehicle has been accessed. It is determined whether an authorized consumer electronics device (CED), that is associated with an authorized person, is connected to a wireless communication interface of an onboard computer system. When an authorized CED has not connected to the wireless communication interface, a notification message is communicated that indicates that the vehicle has been accessed and that an authorized CED has not connected to the wireless communication interface.
Abstract:
A method for activating a remote device is provided. In response to a determination that a remote device is within a first mode signal range of a vehicle and the remote device is moving, the method activates a second mode communication module of the remote device.