Abstract:
A selectively tunable exhaust noise attenuation device includes a body having an outer surface and an inner surface that defines an exhaust volume. An inlet is coupled to the body and fluidically connected to the exhaust volume. A first outlet is coupled to the body and fluidically connected to the inlet and selectively fluidically connected to the exhaust volume and a second outlet coupled to the body and fluidically connected to the exhaust volume. A first conduit including a primary exhaust gas flow path directly fluidically connects the inlet and the first outlet. A second conduit includes a first end and a second. The second conduit defines a secondary exhaust gas flow path. A valve is fluidically connected to one of the first and second conduits. The valve is arranged laterally off-set of the primary exhaust gas flow path.
Abstract:
A Fourier Transform (FT) module configured to determine amplitudes of acceleration at predetermined orders, respectively, by performing a FT on a plurality of values of acceleration associated with a wheel. An order module is configured to identify one of the predetermined orders where one of the amplitudes is greater than a predetermined value and to, based on the one of the amplitudes and a rotational speed of the wheel, determine an order of a frequency corresponding to the rotational speed of the wheel. A sound control module is configured to set characteristics for outputting sound at the order of the frequency corresponding to the rotational speed of the wheel. An audio driver module is configured to, based on the characteristics, apply power to a speaker within a passenger cabin of the vehicle at the order of the frequency corresponding to the rotational speed of the wheel.
Abstract:
When the engine is off and not combusting fuel for one of an auto-stop portion of an auto-stop/start event and operation in a sail mode, a selection module sets at least one of: a selected torque based on a pseudo torque output of the engine; and a selected engine speed based on a pseudo engine speed determined for the one of the auto-stop portion of the auto-stop/start event and the operation in the sail mode. A sound control module, based on the at least one of the selected engine speed and the selected torque, sets at least one of: a frequency at which to output a predetermined engine sound; and a magnitude for outputting the predetermined engine sound at the frequency. An audio driver module applies power to at least one speaker of the vehicle to output the predetermined engine sound at the frequency and the magnitude.
Abstract:
When the engine is off and not combusting fuel for one of an auto-stop portion of an auto-stop/start event and operation in a sail mode, a selection module sets at least one of: a selected torque based on a pseudo torque output of the engine; and a selected engine speed based on a pseudo engine speed determined for the one of the auto-stop portion of the auto-stop/start event and the operation in the sail mode. A sound control module, based on the at least one of the selected engine speed and the selected torque, sets at least one of: a frequency at which to output a predetermined engine sound; and a magnitude for outputting the predetermined engine sound at the frequency. An audio driver module applies power to at least one speaker of the vehicle to output the predetermined engine sound at the frequency and the magnitude.
Abstract:
An audio control system of a vehicle includes a sound control module configured to determine N magnitudes for outputting a predetermined engine sound at N frequencies, respectively, where N is an integer greater than one. A magnitude adjustment module is configured to determine at least one N magnitude adjustment values for the N frequencies, respectively, based on at least one of: an intake air temperature; and an exhaust temperature. The sound control module is further configured to determine N adjusted magnitudes for the predetermined engine sound at the N frequencies based on: the N magnitudes for the N frequencies, respectively; and the N magnitude adjustment values for the N frequencies, respectively. An audio driver module is configured to apply power to at least one speaker of the vehicle and output the predetermined engine sound at the N frequencies and the N adjusted magnitudes for the N frequencies, respectively.
Abstract:
A number of variations may include a method including obtaining data indicating a driver intent from a vehicle and using an ANC system to cancel noise in an appropriately reactive manner.
Abstract:
An engine sound enhancement system includes a conduit in communication with at least one of an intake manifold and an exhaust manifold of an engine. An interface is arranged at least one of within the conduit and between an inlet of the conduit and the at least one of the intake manifold and the exhaust manifold. The interface is responsive to pulses within the at least one of the intake manifold and the exhaust manifold, wherein the interface is configured to transfer the pulses into the conduit.
Abstract:
A vehicle including a passenger compartment having a rear seating area is described. A method for monitoring the rear seating area of the passenger compartment includes monitoring a vehicle operating state comprising one of a key-on state and a key-off state and monitoring the rear seating area. A presence or absence of a passenger in the rear seating area is detected based upon the monitoring, and a control routine is executed based upon the vehicle operating state and the presence or absence of a passenger in the rear seating area.
Abstract:
A control system is provided for a vehicle having an engine which transitions between an activated mode and a deactivated mode. The control system includes a vehicle bus transmitting a signal indicating a vehicle selected mode and if the engine is operating in one of the activated mode and the deactivated mode. The control system also includes an engine sound enhancement (“ESE”) module configured to receive the signal. The ESE module is configured to select at least one ESE tone and a set of ancillary tones associated with one or more of the deactivated mode, the activated mode, and an activation transition. The ESE module selects a specific type of ancillary tones based on the vehicle selected mode.
Abstract:
A method for controlling an extended-range electric vehicle including an internal combustion engine and an electronic sound enhancement system includes selecting a preferred engine order equalization, said preferred engine order equalization achieving a desired engine sound in a passenger compartment of the vehicle responsive to an operator input to an accelerator pedal and decoupled from actual engine operation responsive to a state of charge (SOC) of a propulsion battery. Sound is generated in the passenger compartment by the electronic sound enhancement system responsive to the preferred engine order equalization.