Abstract:
A thermostat and related methods are described for controlling one or more functions, such as heating and cooling in an HVAC. According to some embodiments the thermostat includes a switching circuit for controlling an HVAC function, where closing the switching circuit activates the HVAC function. The thermostat may also include power harvesting circuitry adapted and arranged to harvest power from the HVAC system, where during times when the HVAC function is active the switching circuit opens for a time interval. The power harvesting circuitry may harvest power from the HVAC system during the time interval, and the time interval may be short enough that the HVAC function remains activated without interruption during the time interval.
Abstract:
Systems and methods for self-administering a sound test to verify operation of a speaker and/or alarm within a hazard detection system are described herein. The sound test can verify that the audible sources such as the alarm and speaker operate at the requisite loudness and frequencies. In addition, the sound test can be self-administered in that it does not require the presence of a person to initiate or verify that the audible sources are functioning properly.
Abstract:
Systems and methods for self-administering test to verify operation of various components within a hazard detection system are described herein. Users may be able interact with their mobile devices to control and monitor the results of test being administered by the hazard detection system. The mobile device may receive status updates from a central server that receives data from one or more hazard detection systems within a structure. The status information may be displayed on the user's device to inform the user of potential issues that any of his or her hazard detection systems may have.
Abstract:
A thermostat includes a plurality of HVAC (heating, ventilation, and air conditioning) wire connectors for receiving a plurality of HVAC control wires corresponding to an HVAC system. The thermostat also includes a thermostat processing and control circuit operative to at least partially control the operation of the HVAC system and a powering circuit coupled to the HVAC wire connectors and configured to provide an electrical load power to the thermostat processing and control circuit. The thermostat includes circuitry and methods for maximizing efficiency of energy harvested from the HVAC system connected to the thermostat, and depending on which system is connected to the thermostat, different power schemes can be implemented in order to obtain power from the HVAC system.
Abstract:
A thermostat may include HVAC wire connectors that receive a call relay wire and a power return wire, switching elements having a first operating state in which they create a connection between the call relay wire and the power return wire and a second operating state in which the connection between the call relay wire and the power return wire is interrupted. The thermostat may also include control circuitry configured to cause the switching elements to operate in the first operating state to actuate an HVAC function; detect an anomaly associated with measurements from power monitoring circuitry; cause the switching elements to operate in the second operating state for at least a first time interval; and after the expiration of the first time interval, cause the one or more switching elements to operate in the first operating state and determine whether the anomaly is still present.
Abstract:
Various methods related to antennas and embodiments of antennas are presented. The antenna may include an upper arm, wherein the upper arm is substantially parallel to a ground plane and is electrically coupled with at least a ground shorting structure, a support structure, and a feed structure. The antenna may include the ground shorting structure, which may be at a first end of the upper arm. The antenna may include the support structure, which may be at a second end of the length of the upper arm and may support the upper arm. The antenna may also include the feed structure, which is configured to provide a signal for wireless transmission, the feed structure may be attached to a side of the length of the upper arm.
Abstract:
A thermostat includes a plurality of HVAC (heating, ventilation, and air conditioning) wire connectors including a connection to at least one call relay wire. The thermostat may also include a powering circuit, including a rechargeable battery, which is configured to provide electrical power to the thermostat by power stealing from a selected call relay wire. The power stealing may comprise an active power stealing mode, in which power is taken from the same selected call relay wire that is used to call for an HVAC function, and an inactive power stealing mode in which, in which no active call is being made. The powering circuit may be configured to substantially suspend (or at least reduce the level of) power stealing for at least a first time period following each transition of the thermostat from between operating states.
Abstract:
A smart-home device may include wire connectors that couple to an inductive power coil and a load, one or more solid-state switching elements having a first operating state in which they create a connection between the wire connectors and a second operating state in which the connection is interrupted. The smart-home device may cause the switching element(s) to operate in the first operating state to power the load; detect an anomaly from measurements from power monitoring circuitry; cause the switching element(s) to operate in the second operating state for at least a first time interval; and after the expiration of the first time interval, cause the one or more switching elements to operate in the first operating state and determine whether the anomaly is still present.
Abstract:
A thermostat may include first and second solid-state switching elements coupled to a call relay wire connector and a power return wire connector. The switching elements may be configured to operate in a first state to make a connection between the call relay wire connector and the power return wire connector, and a second state in which the connection is interrupted. The thermostat may also include power monitoring circuitry configured to cause the switching elements to operate in the first state to actuate an environmental control function, receive an indication that the switching elements should transition to the second state, at a first time after receiving the indication, turn off whichever of the first switching element and the second switching element receives AC current from the environmental control system at the first time; and at a second time after the first time, turn off the other of the switching elements.
Abstract:
In a multi-sensing, wirelessly communicating learning thermostat that uses power-harvesting to charge an internal power source, methods are disclosed for ensuring that the battery does not become depleted or damaged while at the same time ensuring selected levels of thermostat functionality. Charge status is monitored to determine whether the present rate of power usage needs to be stemmed. If the present rate of power usage needs to be stemmed, then a progression of performance levels and/or functionalities can be scaled back according to a predetermined progressive power conservation algorithm. In one embodiment, a wake-on-proximity function that activates a user interface based on readings from the proximity sensor may be altered while still allowing a HVAC control circuitry to operate as normal.