摘要:
High aspect ratio structures can be obtained by print-patterning masking features in feature stacks such that each feature has a lateral edge which is aligned in a plane roughly perpendicular to the plane of the substrate on which the features are formed. Due to the differential lateral spreading between features formed on a substrate and formed atop other features, the print head is indexed less than the radius of a droplet to a position where a droplet ejected by the print head forms an upper feature atop a lower feature such that the lateral edges of the upper and lower features are aligned in the plane roughly perpendicular to the plane of the substrate. Feature stacks of two or more features may provide a vertical (or re-entrant) sidewall mask for formation of high aspect ratio structures, by e.g., electroplating, etc.
摘要:
A method of jet-printing smooth micro-scale features is presented. The desired feature prior to being printed is masked by various decimation filters and the decimation is performed at various pitches. The subsequently printed image is then scanned and analyzed to determine the roughness of the lines. The optimum decimation pitch is determined by the feature that exhibits the least amount of droplet spreading and has the lowest edge roughness. The optimum decimation pitch may also be calculated from the material properties and the dynamics of fluids.
摘要:
A domino SRAM array restore pulse generation system launches the word decode line by the same local clock as the restore pulse, thus eliminating any race issues with the word line select. This system allows the global bit select (or column select) to have fast activation by releasing the reset signal (with the earliest arriving array clock, ckl), while guaranteeing almost perfect tracking with the bit decode system. This allows for the widest possible write window; earliest release of the pre-charge in the global column select, and resetting only after the bit decode system is deactivated.
摘要:
High aspect ratio structures can be obtained by print-patterning masking features in feature stacks such that each feature has a lateral edge which is aligned in a plane roughly perpendicular to the plane of the substrate on which the features are formed. Due to the differential lateral spreading between features formed on a substrate and formed atop other features, the print head is indexed less than the radius of a droplet to a position where a droplet ejected by the print head forms an upper feature atop a lower feature such that the lateral edges of the upper and lower features are aligned in the plane roughly perpendicular to the plane of the substrate. Feature stacks of two or more features may provide a vertical (or re-entrant) sidewall mask for formation of high aspect ratio structures, by e.g., electroplating, etc.
摘要:
A patterned layer over a wafer is produced by depositing a print-patterned mask structure. Energized particles of a target material are deposited over the wafer and the print-patterned mask such that particles of said target material incident on the mask structure enter the mask structure body and minimally accumulate, if at all, on the surface of the mask structure, and otherwise the particles of target material accumulate as a generally uniform layer over the wafer. The print-patterned mask structure, including particles of target material therein, is removed leaving the generally uniform layer of target material as a patterned layer over the wafer.
摘要:
In the case of printing at high addressability, where the cell size is smaller than the spot size, an image can be decimated in a manner that will limit the large accumulation of printed material. The proper decimation of the image will depend on the spot size, the physics of drop coalescence and the addressability during printing. A simple method of using concentric decimation is disclosed herein to enable this process.
摘要:
A tunable optical cavity can be tuned by relative movement between two reflection surfaces, such as by deforming elastomer spacers connected between mirrors or other light-reflective components that include the reflection surfaces. The optical cavity structure includes an analyte region in its light-transmissive region, and presence of analyte in the analyte region affects output light when the optical cavity is tuned to a set of positions. Electrodes that cause deformation of the spacers can also be used to capacitively sense the distance between them. Control circuitry that provides tuning signals can cause continuous movement across a range of positions, allowing continuous photosensing of analyte-affected output light by a detector.
摘要:
A method for masking regions of photoresist in the manufacture of a soldermask for printed circuit boards is disclosed. Following application of photoresist over patterned traces on a substrate, a sheet-like thin film is applied over the photosensitive material. The thin film may adhere to the photosensitive material by way of the adhesive state of the photosensitive material or by way of an adhesive applied to the photosensitive material or the thin film or carried by the thin film. Digital mask printing may proceed on the surface of the thin film. The photosensitive material may then be exposed through the printed photomask, the thin film (with photomask) removed, and the photosensitive material developed.
摘要:
Hardware checkpoints may be used to mark software-based speculation regions. An instruction may be provided at the beginning of a speculation region and at the end of the speculation region. If an exception occurs during the speculation region, a hardware rollback may be occurred. The hardware rollback rolls back to the instruction at the beginning of the speculation region. The hardware may take a checkpoint by taking a register snapshot and treating future memory updates as tentative. When the instruction marking the end of the speculation is reached, all the tentative memory updates are committed and the previously taken register snapshot is discarded.
摘要:
The presently described embodiments use a printing process, e.g. a wax printing technique, to pattern a mask layer (such as a soldermask layer) of, for example, a printed circuit. Substantially all other conventional processes in developing soldermask and exposure processes can be maintained. According to the presently described embodiments, each printed circuit will have a unique pattern that matches uniform and non-uniform runout. In one form, the pattern is comprised of wax single drops having a specified gap to make the process transparent to the current industry practice. Furthermore, the single drops can be used for both large and small areas without any development time differences. In at least one form, the wax pattern and the soldermask in the gap are removed during development.