Abstract:
A system and method is provided for updating an aircraft flight management system with approach and landing information received from a NOTAM transmission. The system and method receives an updated ILS category, updates the ILS category and updates the associated decision height/altitude. In addition, the system and method generates a notification of the NOTAM update and disregards user attempts to select an ILS category and/or decision height that is inconsistent with the NOTAM update.
Abstract:
A visual display system is provided for a vehicle having a windshield. The system includes a controller configured to receive information associated with an operating environment of the vehicle and to generate display commands representing the operating environment; a first operator tracking unit configured to collect data associated with a primary vision field of view of an operator; and a first display system coupled to the controller and configured to receive the display commands. The first display system includes a first display unit configured to display at least a portion of a border representing a boundary of the primary vision field of view of the operator and first symbology representing the operating environment of the vehicle.
Abstract:
Presented herein is a system and method for graphically displaying aircraft traffic information. The system comprises an Operating Company Symbology database and a display system coupled to a processor that is configured to (1) receive traffic information; (2) determine the Operating Company Symbology from the received traffic information; (3) receive a selection of an aircraft or traffic information including at least one of the Flight ID, Operating Company, or Surface Traffic; (4) graphically render aircraft symbology and the associated traffic information on the display.
Abstract:
Methods and systems are provided for assisting operation of an aircraft when diverting from a flight plan using a comparative vertical profile display. A vertical profile display includes a first graphical representation of a first vertical profile corresponding to a first lateral route defined by a flight plan for the aircraft and a second graphical representation of a second vertical profile corresponding to a modified lateral route different from the first lateral route displayed concurrently on the vertical profile display. The first vertical profile corresponding to the first lateral route is depicted on the vertical profile display in a first plane and the second vertical profile corresponding to the modified lateral route is depicted on the vertical profile display in a second plane different from the first plane.
Abstract:
Embodiments of the present disclosure assist pilots of aerial vehicles in performing particular operations utilizing improved user interface(s). In some contexts, pilots performing vertical takeoffs or vertical landings cannot visually inspect the environment around the vehicle. Embodiments of the present disclosure utilize virtual elements, including a virtual corridor and virtual vehicle corresponding to an aerial vehicle, to enable improved visualization and control of an aerial vehicle within a particular environment. Utilizing representation(s) of the virtual elements, including a virtual corridor and/or virtual vehicle, embodiments of the present disclosure provide improved user interfaces that assist a pilot in safely controlling an aerial vehicle (even without visual inspection of a real-world environment) during vertical takeoff and/or vertical landing.
Abstract:
Methods and systems are provided for assisting operation of an aircraft when diverting from a flight plan using a comparative vertical profile display. A vertical profile display includes a first graphical representation of a first vertical profile corresponding to a first lateral route defined by a flight plan for the aircraft and a second graphical representation of a second vertical profile corresponding to a modified lateral route different from the first lateral route displayed concurrently on the vertical profile display. The first vertical profile corresponding to the first lateral route is depicted on the vertical profile display in a first plane and the second vertical profile corresponding to the modified lateral route is depicted on the vertical profile display in a second plane different from the first plane.
Abstract:
Methods and systems for providing location information for a user-selected feature on an active vertical situation display (VSD) in a cockpit of an aircraft. The method includes rendering the VSD having a plurality of terrain and weather features; receiving, from a user interface, the user-selected feature from among the plurality of features on the VSD, the plurality of features including terrain features and weather features; causing a reticle to be displayed as an overlay, centered, on the user-selected feature on the VSD, responsive to receiving the user-selected feature; rendering a horizontal extension from a center of the reticle to an intersection on a vertical axis of the VSD, and a vertical extension from the center of the reticle to an intersection on a horizontal axis of the VSD. An elevation label and a distance label are positioned on the respective extensions.
Abstract:
Methods and systems are provided for generating an alert for an aircraft potentially exceeding speed limits in airspace with speed limitations. The method comprises retrieving a flight plan for the aircraft and identifying airspace with speed limitations along the flight plan. A speed profile is generated based on the in-flight aircraft's current position, speed and trajectory. Any predicted speed violations are identified by comparing the speed profile with the airspace with speed limitations along the flight plan. A predictive time window is calculated that allows for the in-flight aircraft to decelerate sufficiently to comply with the speed limits of the airspace with speed limitations. The predictive time window includes a zone for the aircraft to reduce its airspeed and a reaction buffer zone to allow the aircrew sufficient time to comply with instructions to decelerate the aircraft. Finally, an alert is generated for the crew of the in-flight aircraft upon entering the predictive time window.
Abstract:
Systems and methods for displaying ground effect ceiling limit values associated with an operation of a mobile platform on a display are provided. The method includes receiving a preference for the display of the ground effect ceiling limit values, and determining a gross weight of the mobile platform. The method includes based on the preference, determining, with a processor, an air temperature associated with the operation of the mobile platform. The method also includes based on the gross weight and the air temperature, determining with the processor, an in ground effect limit value and an out of ground effect limit value. The method includes displaying the determined in ground effect limit value and the determined out of ground effect limit value on the display.
Abstract:
An electric taxi motive control system of a first aircraft comprises a first aircraft position determining system configured to generate a first aircraft position signal, a first aircraft receiver, configured to receive transmissions of a second aircraft position signal, a first aircraft pilot interface configured to accept an input indicative of a first aircraft desired speed, and a first aircraft electronic controller configured to; determine a aircraft separation distance indicative of the distance between the first aircraft and the second aircraft, compare the aircraft separation distance with a safe distance value; and generate a modified first aircraft commanded speed signal when the aircraft separation distance is less than the safe distance value.