Abstract:
A method and an apparatus for communication between user equipment (UEs) is disclosed. The method comprises: receiving a data packet from a first UE, the data packet including data and an IP address of a second UE; obtaining a context record for the second UE, the context record including the IP address of the second UE and an identifier of a second user plane; sending the data packet to the second user plane according to the identifier of the second user plane in order to enable the second user plane to send the data packet to the second UE.
Abstract:
A vehicle lighting control method includes that a roadside communications device sends a first message to a vehicle. The first message prompts the vehicle to illuminate a first target, and the first target is near a travel path that the vehicle is to pass through. Before passing the first target, the vehicle adjusts the vehicle into a first lighting mode in advance based on the first message to illuminate the first target.
Abstract:
A method and an apparatus for communication between user equipment (UEs) is disclosed. The method comprises: receiving a data packet from a first UE, the data packet including data and an IP address of a second UE; obtaining a context record for the second UE, the context record including the IP address of the second UE and an identifier of a second user plane; sending the data packet to the second user plane according to the identifier of the second user plane in order to enable the second user plane to send the data packet to the second UE.
Abstract:
A method is provided, including: learning, by a terminal, a first CQI index according to a first CQI table, and sending the first CQI index to a base station; receiving, by the base station, the first CQI index sent by the terminal device, determining a first MCS index according to the first CQI table, a first MCS table, and the received first CQI index, and sending the determined first MCS index to the terminal device; and receiving, by the terminal, the first MCS index sent by the base station, and determining a modulation order and a code block size according to the first MCS table and the received first MCS index, where the first CQI table includes an entry in which a modulation scheme is higher than 64QAM, and the first MCS table includes an entry in which a modulation scheme is higher than 64QAM.
Abstract:
A method and an apparatus for communication between user equipment (UEs) is disclosed. The method comprises: receiving a data packet from a first UE, the data packet including data and an IP address of a second UE; obtaining a context record for the second UE, the context record including the IP address of the second UE and an identifier of a second user plane; sending the data packet to the second user plane according to the identifier of the second user plane in order to enable the second user plane to send the data packet to the second UE.
Abstract:
Embodiments of the present invention provide an uplink control information transmission method, user equipment, and a base station. In a first uplink demodulation reference signal (UL DMRS) pattern, resource elements (Res) in one orthogonal frequency division multiplexing (OFDM) symbol in an uplink subframe are used to carry the UL DMRS. The method includes: mapping, by user equipment (UE), uplink control information (UCI) to REs in the uplink subframe according to the first UL DMRS pattern, where an OFDM symbol in which the REs carrying the UCI are located is adjacent to the OFDM symbol in which the REs carrying the UL DMRS are located; and sending, by the UE to a base station, the uplink subframe that carries the UCI.
Abstract:
Disclosed are a data transmission method, apparatus and system in a heterogeneous network. The data transmission method in a heterogeneous network comprises: a macro base station carrying control information in a subframe, transmitting the control information to a terminal in a control-frequency band, and informing a low power node of the control information; according to the control information, the low power node carrying data information in a subframe and transmitting the data information to a terminal by a data-frequency band; the control-frequency band and the data-frequency band are statically deployed, and the control-frequency band and the data-frequency band are non-overlapped.
Abstract:
Embodiments of the present invention provide an uplink control information transmission method, user equipment, and a base station. In a first uplink demodulation reference signal (UL DMRS) pattern, resource elements (Res) in one orthogonal frequency division multiplexing (OFDM) symbol in an uplink subframe are used to carry the UL DMRS. The method includes: mapping, by user equipment (UE), uplink control information (UCI) to REs in the uplink subframe according to the first UL DMRS pattern, where an OFDM symbol in which the REs carrying the UCI are located is adjacent to the OFDM symbol in which the REs carrying the UL DMRS are located; and sending, by the UE to a base station, the uplink subframe that carries the UCI.
Abstract:
Embodiments of the present invention provide a congestion control method, a device, and a system. In the embodiments of the present invention, because a gateway device, unlike a gateway device that performs congestion control on all user equipments by using a same control policy in the prior art, performs congestion control on a user equipment according to a real-time location of the user equipment and a real-time congestion situation of a location region in which the user equipment is camping, thereby improving flexibility and accuracy of congestion control.
Abstract:
Disclosed are a data transmission method, apparatus and system in a heterogeneous network. The data transmission method in a heterogeneous network comprises: a macro base station carrying control information in a subframe, transmitting the control information to a terminal in a control-frequency band, and informing a low power node of the control information; according to the control information, the low power node carrying data information in a subframe and transmitting the data information to a terminal by a data-frequency band; the control-frequency band and the data-frequency band are statically deployed, and the control-frequency band and the data-frequency band are non-overlapped.