摘要:
In a data read operation, a selected memory cell and a reference memory cell are connected to complementary first and second data lines via complementary first and second bit lines, respectively. A differential amplifier supplies passing currents of the memory cell and the reference cell to complementary first and second data buses, and amplifies a passing current difference between the first and second data buses occurring corresponding to an electric resistance difference between the memory cell and reference cell to produce a voltage difference of a polarity corresponding to the level of the stored data of the selected memory cell between first and second nodes.
摘要:
Normal memory cells and dummy cells are arranged continuously in a memory array. In a data read operation, first and second data lines are connected to the selected memory cell and the dummy cell, respectively, and are supplied with operation currents of a differential amplifier. An offset corresponding to a voltage difference between first and second offset control voltages applied from voltage generating circuits are provided between passing currents of the first and second data lines, and a reference current passing through the dummy cell is set to a level intermediate between two kinds of levels corresponding to storage data of a data read current passing through the selected memory cell.
摘要:
During data reading, a sense enable signal is activated to start charging of a data line prior to formation of a current path including the data line and a selected memory cell in accordance with row and column selecting operations. Charging of the data line is completed early so that it is possible to reduce a time required from start of the data reading to such a state that a passing current difference between the data lines reaches a level corresponding to storage data of the selected memory cell, and the data reading can be performed fast.
摘要:
A memory array MA.sub.0 is divided into four sub memory arrays by sense amplifier strips. Word drivers belonging to each sub memory array are connected to a corresponding segment boosted signal line. A fuse is connected to each segment boosted signal line. By blowing out a fuse, the sub memory array corresponding to the blown out fuse is no longer used. The sub memory array that is no longer used is exchanged with a spare sub memory array of a spare memory array.
摘要:
A semiconductor memory device includes a sense amp band comprising a plurality of sense amplifiers, and a plurality of power supply and ground lines arranged in a meshed shape. Power supply and ground lines include lines arranged in parallel with and in proximity to the sense amp band. Each sense amplifier in the sense amp band is connected to a power supply and ground line arranged in proximity to and in parallel with the sense amplifier through a drive component. Each drive component is provided for a predetermined number of sense amplifiers, and is rendered conductive in response to a sense amplifier activation signal from a signal line arranged in parallel with the sense amp band. The plurality of power supply and ground lines arranged in a meshed shape are contacted at crossings. Therefore, in the semiconductor memory device, no distribution of power supply potential is generated to allow a stable supply of a power supply and ground potential to an arbitrary circuit portion. In addition, since a sense amplifier is connected to proximate power supply and ground lines through a drive component, a reliable and high-speed sensing operation is possible irrespective of a length of a sense amp drive signal line.
摘要:
A power supply line is disposed parallel to a sense amplifier train including a plurality of sense amplifiers at the side of each subarray. The power supply line is connected to the sense amplifier included in the sense amplifier train via a plurality of drive transistors and a sense amplifier drive line.
摘要:
A semiconductor memory device includes a sense amp band including a plurality of sense amplifiers, and a plurality of operation power supply potential lines and a plurality of ground potential lines arranged in a meshed shape. The operation power supply potential lines and the ground potential lines include the lines arranged in parallel with and in proximity to the sense amp band. Each sense amplifier in the sense amp band is connected to an operation power supply potential line and a ground line arranged in proximity to and in parallel with the sense amplifier through a drive component. The drive component is provided one for a predetermined number of sense amplifiers, and is rendered conductive in response to a sense amplifier activation signal from a signal line arranged in parallel with the sense amp band. The plurality of operation power supply potential lines and the plurality of ground lines arranged in a meshed shape are contacted at crossings. Therefore, in the semiconductor memory device, no distribution of power supply potentials is generated to allow a stable supply of a power supply potential and a ground potential to an arbitrary circuit portion. In addition, since a sense amplifier is connected to a proximate operation power supply potential line and ground line through a drive component, a reliable and high-speed sensing operation is possible irrespective of a length of a sense amp drive signal line.
摘要:
A semiconductor integrated circuit device includes a pad receiving a power supply potential and a pad receiving a ground potential both formed on a chip, and a power supply potential line and a ground potential line connected to respective pads and formed in a loop manner along a circumference of the chip. The semiconductor integrated circuit device includes a first data output circuit provided for a data output terminal proximate to a predetermined potential pad, and a second data output circuit provided for a data output terminal distant from the predetermined potential pad. First and second data output circuits drive corresponding data output terminals to the predetermined potential in two steps at a lower rate and a higher rate in accordance with an internal output data signal. First and second data output circuits include components for compensating for and canceling an influence on driving the corresponding output nodes due to the difference of distances to the predetermined pad therefrom. As a result, data is provided at a high speed and without overshoot, undershoot or ringing.
摘要:
A semiconductor memory device includes a sense amp band comprising a plurality of sense amplifiers, and a plurality of power supply and ground lines arranged in a meshed shape. Power supply and ground lines includes lines arranged in parallel with and in proximity to the sense amp band. Each sense amplifier in the sense amp band is connected to a power supply and ground line arranged in proximity to and in parallel with the sense amplifier through a drive component. Each drive component is provided for a predetermined number of sense amplifiers, and is rendered conductive in response to a sense amplifier activation signal from a signal line arranged in parallel with the sense amp band. The plurality of power supply and ground lines arranged in a meshed shape are contacted at crossings. Therefore, in the semiconductor memory device, no distribution of power supply potential is generated to allow a stable supply of power supply and ground potential to an arbitrary circuit portion. In addition, since a sense amplifier is connected to proximate power supply and ground lines through a drive component, a reliable and high-speed sensing operation is possible irrespective of a length of a sense amp drive signal line.
摘要:
A semiconductor integrated circuit device includes a pad receiving a power supply potential and a pad receiving a ground potential both formed on a chip, and a power supply potential line and a ground potential line connected to respective pads and formed in a loop manner along a circumference of the chip. The semiconductor integrated circuit device includes a first data output circuit provided for a data output terminal proximate to a predetermined potential pad, and a second data output circuit provided for a data output terminal distant from the predetermined potential pad. First and second data output circuits drive corresponding data output terminals to the predetermined potential in two steps at a lower rate and a higher rate in accordance with an internal output data signal. First and second data output circuits include components for compensating for and canceling an influence on driving the corresponding output nodes due to the difference of distances to the predetermined pad therefrom. As a result, data is provided at a high speed and without overshoot, undershoot or ringing.