Abstract:
A holding side contact arm (317) for holding an IC to be tested is positioned on the optical axis (OP) of an alignment CCD camera (326) of an alignment device (320), the IC to be tested is inserted to a first opening (321a) formed on an alignment movable portion (321), and a contact member (317d) of the holding side contact arm (317) is brought to contact the alignment movable portion (321). Then, an alignment amount for correcting a position of the IC to be tested is calculated by taking an image by the camera (326) and performing image processing. A lock-and-free means (318) provided to a first contact arm (315a1) is made to be in a non-restricted state, a movable portion driving device (322) is driven based on the alignment amount, and the holding side contact arm (317) contacting the alignment movable portion (321) is moved with respect to a root side contact arm (316), so that alignment of a position of the IC to be tested is performed.
Abstract:
A frit-sealing apparatus for a cathode-ray tube has a nozzle portion being inserted into and withdrawn later from the cathode-ray tube supported in a certain position; a guide block for supporting the nozzle portion; a guide rod for supporting the guide block so as to slide in directions in which the nozzle portion is inserted and withdrawn; and a rotation restriction member being in contact with an outer surface of the guide block, thereby restricting rotation of the guide block.
Abstract:
Human bodies are shielded from an alternating electric field radiated from a deflection yoke of a cathode-ray tube device to prevent the alternating electric field from adversely affecting the human bodies. For an alternating electric field traveling forward in the direction of a tube axis 28 of a cathode-ray tube, a cone section 1b is formed with a conductive film 17 for shielding an electric field and/or a face panel 2 is formed with a transparent conductive film 21 for shielding an electric field and the transparent conductive film 21 is grounded or an optimum potential is given only to the transparent conductive film 21 for shielding an electric field.
Abstract:
An ignition apparatus for an internal combustion engine realizes a stable ignition control by ensuring an adequate capacitor charge voltage even in a high-speed engine operation. The apparatus comprises a trigger circuit (50) which includes a pulse generator (30) for sustaining a trigger signal for a predetermined period required for a capacitor (8) to discharge, and a switch (40) for applying a voltage to a gate of a thyristor 12 by opening a short-circuit between gate and cathode thereof. The gate-cathode path of the thyristor is short-circuited upon charging of the capacitor and after discharging thereof, to thereby set a hold current for the thyristor at a high level so that after lapse of a predetermined time and a turn-off time from the beginning of the discharge of the capacitor, the DC-DC converter (2) is restarted to secure an adequate capacitor charge voltage (d).
Abstract:
A cathode ray tube for producing images in red, green or blue is used for a projection type television set. A multi-layered interference filter is disposed between a face glass and a fluroescent layer so as to gather light beams from the fluorescent layer. The innermost layer of the interference layer is made of a high refractive index material such as tantalum pentaoxide which is resistant to hydrofluoric acid, so that a fluorescent material can be applied as efficiently as possible. The innermost layer of the interference filter has the optical distance expressed by the equation:nd=(2m+1).lambda..sub.h /4.lambda..sub.h =.lambda.+.lambda..sub.pwhere n stands for the refractive index of the layer, d stands for thickness of the layer, m stands for an integer larger than 0, .lambda..sub.h is the cutoff wavelength of the optical spectrum transmissitivity of the multi-layered interference film for yielding a transmissivity of fifty percent and .lambda..sub.p is 20 to 100 nm. The innermost layer is made thick so as to be resistant to hydrofluoric acid.
Abstract:
A tachometer signal generating device comprises signal coils which generate pulse signals corresponding to predetermined crank angle positions in synchronism with revolution of an engine, and a microcomputer which generates ignition control signals or fuel control signals on the basis of the pulse signals and which generates a tachometer signal of 6 pulses/one revolution.
Abstract:
An ignition system for internal combustion engines comprising an ignition coil (38), a power circuit (30) including a converter for converting the output of a battery (31) into a high voltage, a capacitor (37) arranged at the primary side of the ignition coil (38) and charged by the output from the power circuit (30), a discharging control thyristor (41) which conducts at a spark-timing of an internal combustion engine to discharge electric charges in the capacit of (37) into the primary winding (38a) of the ignition coil (38) and converter control means (49, 52) which makes the converter inactive earlier than the input of a trigger signal to the gate of the thyristor (41) by a first predetermined time (t.sub.1), and which makes the converter active again in a second predetermined time (t.sub.2) since the thyristor (41) has been triggered to conduct.
Abstract:
A phosphor for a chathode ray tube obtained by firing a tervalent europium-activated yttrium oxide of the formula Y.sub.2 O.sub.3 :Eu containing at least one member selected from the group consisting of barium fluoride and magnesium fluoride.
Abstract translation:通过焙烧含有选自氟化钡和氟化镁中的至少一种的式Y 2 O 3:Eu的三价铕激活的氧化钇获得的双极射线管的荧光体。
Abstract:
An ignition timing control circuit for an internal combustion engine of a ring gear tooth counting type includes a throttle sensor for sensing the load condition of the engine and generating an output voltage representative of the sensed load condition, a reference-signal generator for generating a reference signal, a clock pulse generator in the form of a gear-signal pick-up coil for generating clock pulses based on the rotational position of a ring gear, a counter operable to start the counting of the clock pulses generated by the clock pulse generator when the reference-signal generator generates a reference signal, the counter outputting a digitalized output representative of the number of the counted clock pulses, a D/A converter for converting the digitalized output of the counter into an analog voltage having a stepped form, an integrator for integrating and smoothing out the stepped output voltage of the D/A converter, and a comparator for comparing the output voltage of the integrator and the output voltage of the throttle sensor and generating an output signal for controlling the ignition timing of the engine in accordance with the result of comparison. In one embodiment, the integrator has a fixed time constant and comprises a capacitor. In another embodiment, the integrator has a variable time constant and comprises a plurality of capacitors connected to the D/A converter through a switch for changing the total capacitance of the integrator in response to the output of the counter.
Abstract:
An ignition timing control apparatus for an internal combustion engine such as an outboard motor is disclosed. The ignition timing control apparatus has a throttle switch, interlocked with a throttle valve, including a first contact closed when the throttle valve is fully opened and a second contact closed when the throttle valve is fully closed. In the former case, the ignition timing of the engine is retained in an advanced angle, thereby enhancing the acceleration while in the latter case, the ignition timing is retained in a retarded angle, thereby enhancing the deceleration. When the first and second contacts are both opened, the ignition timing is advanced corresponding to the engine speed.