摘要:
It is disclosed an electronic device to control an ignition coil of an internal combustion engine, comprising a high-voltage switch, a driving unit, a bias circuit and an integrating circuit. The high-voltage switch is connected in series with a primary winding of a coil. The driving unit is configured to control the closing and opening of the high-voltage switch. The integrating circuit is interposed between the bias circuit and a reference voltage. The integrating circuit comprises an integrating capacitor. The integrating capacitor is configured, in the case wherein a pre-ignition of the comburent-combustible mixture in the combustion chamber during the phase of charging occurs, to pre-charge during the phase of charging energy in the primary winding and it is configured, in the case wherein the pre-ignition of the comburent-combustible mixture does not occur, to maintain the charge state substantially constant during the phase of charging energy.
摘要:
A spark plug heat up method via transient control of the spark discharge current. The high temperature plasma channel is used to heat up the central electrode, and the temperature and energy of the plasma channel are realized via transient control of the discharge current. The heating up process takes place before firing the engine, using discharge current to actively heat up the spark plug from inside. By monitoring the discharge current amplitude and discharge duration, the temperature change of the central electrode and the ceramic insulator can be carefully measured and controlled within a proper window. This method can be used to measure the heating range of the spark plug, and to prevent or remove the carbon deposit on the central electrode and the ceramic insulator generated under various engine operation conditions, such as engine cold start, full load operation, and heavy EGR condition, as well as realize self-cleaning.
摘要:
A hybrid vehicle includes an internal combustion engine, a rotating electric machine, an electric storage device, a power supply device, and a controller. The controller executes switching control to switch from a first electric power supply to a second electric power supply by starting the internal combustion engine. The first electric power supply is the supply of electric power from the electric storage device to the electric device. The second electric power supply is the supply of electric power from the rotating electric machine to the electric device. The controller controls the power supply device and the internal combustion engine such that the internal combustion engine is started with the first electric power supply being continued during the switching control.
摘要:
It is possible to adjust electromagnetic energy introduced from a low-voltage side of a primary winding 20 of an ignition coil 2 after start discharging to a spark plug 1 from the ignition coil 2 in the correct proportion by threshold-determining either one or both of a primary voltage V1 applied to a primary side of the ignition coil 2 and a secondary current I2 flowing in a secondary side of the ignition coil 2, and by opening and closing a discharging switch 32 disposed between an auxiliary power supply 3 including an energy storage coil 330 and a low-voltage side terminal 201 of the ignition coil 2.
摘要:
An ignition apparatus includes a spark plug having a high voltage electrode and an external electrode facing each other across a gap and being configured to generate a spark discharge in the gap to ignite a combustible fuel mixture in a combustion chamber of an internal combustion engine, an ignition coil device configured to generate a predetermined high voltage and supply the high voltage to the high voltage electrode to form a path for the spark discharge in the gap, a high frequency power supply having a band-pass filter and being configured to supply an alternating current to the spark discharge path, and a control device configured to control operation timing of the high frequency power supply. The band-pass filter passes a frequency of from 1 MHz to 4 MHz.
摘要:
An ignition apparatus includes a blow-off determining unit. The blow-off determining unit determines, when a secondary electric current drops below a predetermined threshold value Ia during a determination period, that blow-off has occurred; the determination period is a predetermined time period ΔT from the start of a spark discharge by a main ignition circuit. Further, when it is determined that blow-off has occurred during a main ignition (full-transistor ignition), it is controlled to perform a continuing spark discharge after the main ignition in a next cycle. Moreover, a secondary electric current command value I2a in performing the continuing spark discharge is set to an electric current value that is obtained by adding a predetermined electric current value α to the predetermined threshold value Ia used in the blow-off determination. Consequently, in the next cycle, it is possible to reliably prevent blow-off, thereby reliably preventing a misfire.
摘要:
The present invention has an object to provide a semiconductor device that has protective functions and is capable of achieving miniaturization and cost reduction. A semiconductor device according to the present invention includes a switching element, a drive circuit, and a control circuit. When a high-level drive control signal is output from the drive circuit, the control circuit stops driving of the switching element and charges an electric charge storing capacitor. When a low-level drive control signal is output from the drive circuit, the control circuit drives the switching element using electric charges stored in the electric charge storing capacitor.
摘要:
A power circuit, which supplies plasma energy to a spark plug, includes a DC/DC converter which charges a tank capacitor, a voltage limiting circuit which restricts an output voltage of the converter to a predetermined value, a PJ capacitor which is connected to the output side of the converter and is charged by the tank capacitor, and a high breakdown voltage switch which is connected between the PJ capacitor and the DC/DC converter and controls a charging time period of the PJ capacitor in response to operating conditions of an internal combustion engine; and the power circuit switches a voltage limiting value of the tank capacitor for charging the PJ capacitor in synchronization with a driving signal of the high breakdown voltage switch.
摘要:
The ignition performance monitoring method and apparatus determines the time period during which the current generated in the primary winding of an ignition coil by a pulse from a capacitive discharge ignition system takes the decay to a zero ampere level and uses this determined period to calculate and indicate the firing voltage required to fire a spark plug. The apparatus includes a current sensor connected to sense the current in the primary winding of the ignition coil and a comparator to compare the sensed current with a reference indicative of a zero ampere current level. The comparator provides an output signal having a pulse width indicative of the time the sensed current was above the zero ampere level to a processor which uses the output signal and data values unique to the ignition coil employed to determine a firing voltage for a spark plug fired by the ignition coil.
摘要:
An ignition system for internal combustion engines comprising an ignition coil (38), a power circuit (30) including a converter for converting the output of a battery (31) into a high voltage, a capacitor (37) arranged at the primary side of the ignition coil (38) and charged by the output from the power circuit (30), a discharging control thyristor (41) which conducts at a spark-timing of an internal combustion engine to discharge electric charges in the capacit of (37) into the primary winding (38a) of the ignition coil (38) and converter control means (49, 52) which makes the converter inactive earlier than the input of a trigger signal to the gate of the thyristor (41) by a first predetermined time (t.sub.1), and which makes the converter active again in a second predetermined time (t.sub.2) since the thyristor (41) has been triggered to conduct.