Abstract:
To configure a UT for handover between a source evolved Node-B (eNB) and a target eNB using aerial communications in a cellular network, the UE processing circuitry is to decode measurement configuration information from the source eNB. The measurement configuration information includes a plurality of height thresholds associated with aerial height of the UE. A measurement report is encoded for transmission to the source eNB. The measurement report includes the aerial height of the UE and the measurement report generation triggered based on one or more triggering events associated with the plurality of height thresholds. RRC signaling from the source eNB is decoded, the RRC signaling including a handover command. The handover command is based on a handover decision by the source eNB using the measurement report. A handover from the source eNB to the target eNB is performed based on the handover command.
Abstract:
Apparatuses, systems and methods for mitigation and detection of drone-based interference are disclosed. An apparatus for a base station can include processing circuitry to encode a message to control a user equipment (UE) to measure received power received from a set of observed cells in a wireless communication network. Processing circuitry can further be configured to receive a report from the UE that includes received power for the set of observed cells. The processing circuitry can further determine interference power from the UE to a specified cell of the set of observed cells based on the report and further based on reported antenna gain. The processing circuitry can further determine whether to support communication of the UE within the wireless communication network based on the determined interference power from the UE. Other systems, methods and apparatuses are described.
Abstract:
Methods and apparatus for predicting favored wireless service areas for drones are disclosed. A controller for a drone includes a service area identifier to identify favored wireless service areas during a flight of the drone. The favored wireless service areas are predicted by a model developed remotely from the drone. The controller also includes a service area selector to select one of the favored wireless service areas during the flight. The controller also includes a route manager to adjust a flight path of the drone during the flight based on the selected one of the favored wireless service areas.
Abstract:
Systems and methods to encode and/or decode structured super-position coding to enhance control channel capacity are disclosed herein. User equipment (UE) may be configured to communicatively couple to an Evolved Universal Terrestrial Radio Access Network (E-UTRAN) Node B (eNB). A first UE and a second UE may be coupled to the eNB. Basic PDCCH may be sent to the second UE, and extra PDCCH may be sent to the first UE on the same time-frequency resource. The second UE may be able to decode the basic PDCCH as it normally does. The first UE may be able to decode the basic PDCCH for the second UE, cancel the basic PDCCH from the signal, and decode the extra PDCCH. The extra PDCCH may be restricted to certain positions relative to the basic PDCCH to simplify searching by the first UE.
Abstract:
A method for self-interference cancellation in a wireless communication device. The wireless communication device has an estimator, a transmitter and a cancellation device. The estimator is configured to estimate a known signal received from a second wireless communication device when the second wireless communication device is utilized less than a predetermined threshold. The transmitter is configured to transmit within a coherence time of the estimated known signal, a predetermined signal. The cancellation device is configured to cancel the estimated known signal from a received signal.
Abstract:
Described are methods and devices for enabling D2D communications with signal structures that require minimal changes to the current LTE architecture. In the embodiments described, the eNB grants resources to UEs for D2D communication and either initiates or permits a pair of UEs to establish a D2D link. Certain embodiments are designed to minimize changes to the current LTE control signaling structure by having the control signaling always come from the eNB as in a normal cellular link so that the transmitting UE transmits over a data channel (e.g., PUSCH/PDSCH) that the receiving UE is able to decode.
Abstract:
Systems and methods to encode and/or decode structured super-position coding to enhance control channel capacity are disclosed herein. User equipment (UE) may be configured to communicatively couple to an Evolved Universal Terrestrial Radio Access Network (E-UTRAN) Node B (eNB). A first UE and a second UE may be coupled to the eNB. Basic PDCCH may be sent to the second UE, and extra PDCCH may be sent to the first UE on the same time-frequency resource. The second UE may be able to decode the basic PDCCH as it normally does. The first UE may be able to decode the basic PDCCH for the second UE, cancel the basic PDCCH from the signal, and decode the extra PDCCH. The extra PDCCH may be restricted to certain positions relative to the basic PDCCH to simplify searching by the first UE.
Abstract:
A circuit arrangement includes a preprocessing circuit configured to obtain context information related to a user location, a learning circuit configured to determine a predicted user movement based on context information related to a user location to obtain a predicted route and to determine predicted radio conditions along the predicted route, and a decision circuit configured to, based on the predicted radio conditions, identify one or more first areas expected to have a first type of radio conditions and one or more second areas expected to have a second type of radio conditions different from the first type of radio conditions and to control radio activity while traveling on the predicted route according to the one or more first areas and the one or more second areas.
Abstract:
Embodiments of interference coordination for aerial vehicle user equipment (UE) are described. In some embodiments, a base station (BS) is configured to select a subset of time-frequency resources dedicated for use in serving aerial vehicle UEs and communicate with the aerial vehicle UEs via the subset of time-frequency resources. In some embodiments, the BS may transmit signaling to a neighbor BS that indicates the BS has dedicated the subset of time-frequency resources for serving aerial vehicle UEs and the subset of time-frequency resources to be used. The BS may receive an indication from the neighbor BS that a neighbor BS is to dedicate the subset of time-frequency resources to serve aerial vehicle UE, and based on the indication, the BS may reduce transmission activities in the subset of time-frequency resources, including refraining from transmitting or reducing an amount of information or power level of signaling to the aerial vehicle UEs.
Abstract:
Apparatus, systems, and methods to identify victims and aggressors of interference in full duplex communication systems are described. In one example, a controller comprises logic to detect a quality of service issue in a wireless communication downlink with a first user equipment in a first cell and in response to detecting the quality of service issue, determine whether the user equipment is a victim of interference from a second user equipment or is a victim of interference from a downlink with a second user equipment in a second cell. Other examples are also disclosed and claimed.